I Semester B.A./B.Sc. Examination, April/May 2021
 (CBCS) (2020-21 and Onwards) (Fresh)
 Paper - I : MATHEMATICS

Time: 3 Hours
Max. Marks : 70
Instruction : Answer all questions.
PART - A
I. Answer any five questions.
a) Reduce the matrix $A=\left[\begin{array}{ccc}1 & 3 & -2 \\ 2 & -1 & 4 \\ 1 & -11 & 14\end{array}\right]$ to echelon form.
b) Find the eigen values of the matrix $\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$.
c) Find the $n^{\text {in }}$ derivative of $\sin ^{2} x$.
d) if $z=x^{3}-4 x^{2} y+5 y^{2}$, find $\frac{\partial^{2} z}{\partial x \partial y}$.

e) Evaluate $\int_{0}^{\pi / 2} \cos ^{8} x d x$.
f) Evaluate $\int_{0}^{\pi / 2} \sin ^{4} x \cos ^{2} x d x$.
g) Find the equation of the sphere whose centre is $(3,-1,4)$ and which passes through the point $(1,-2,0)$.
h) Show that the spheres $x^{2}+y^{2}+z^{2}+6 y+14 z+28=0$ and $x^{2}+y^{2}+z^{2}+6 x$ $+8 y+4 z+24=0$ cut orthogonally.
PART - B
II. Answer any three questions.
$(5 \times 3=15)$
a) Find the rank of the matrix $A=\left[\begin{array}{ccc}1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3\end{array}\right]$ by reducing it to normal form.
P.T.O.
b) Solve the system of equations :
$x_{1}+3 x_{2}+2 x_{3}=0$
$2 x_{1}-x_{2}+3 x_{3}=0$
$3 x_{1}-5 x_{2}+4 x_{3}=0$
$x_{1}+17 x_{2}+4 x_{3}=0$.
c) Show that the equations $x+y+z=6, x+2 y+3 z=14, x+4 y+7 z=30$ are consistent and solve them.
d) Find the eigen values and eigen vectors of the matrix $A=\left[\begin{array}{cc}5 & -1 \\ 4 & 9\end{array}\right]$.
e) Using Cayley Hamilton theorem, find the inverse of the matrix $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right]$
III. Answer any three questions.
a) Find the $n^{\text {th }}$ derivative of $\frac{x+3}{(x-1)(x+2)}$.
b) If $x=$ sint and $y=\operatorname{cospt}$ then prove that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(n^{2}-p^{2}\right)$ $y_{n}=0$.
c) State and prove Euler's theorem for homogeneous function of two variables.
d) If $z=\sin \left(\frac{x}{y}\right)$ and $x^{2}+y^{2}=a^{2}$, find $\frac{d z}{d x}$.
e) If $u=x^{2}+y^{2}+z^{2}, v=x y+y z+z x, w=x+y+z$. Find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.
PART - D
IV. Answer any two questions.
a) Obtain the reduction formula for $\int \sec ^{n} x d x$, where n is a positive integer.
b) Evaluate $\int_{0}^{\pi} x \sin ^{6} x d x$.
c) Evaluate $\int_{0}^{1} \frac{x^{2}-1}{\log x} d x$, where a is a parameter, using differentiation under integral sign.

PART - E

V. Answer any two questions.
a) Find the equation of the tangent plane to the sphere, $3\left(x^{2}+y^{2}+z^{2}\right)-2 x-$ $3 y-4 z-22=0$ at $(1,2,3)$.
b) Find the equation of the right circular cone generated by revolving the line $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ about the line $\frac{x}{-1}=\frac{y}{1}=\frac{z}{2}$.
c) Find the equation of a right circular cylinder of radius 2 whose axis passes through ($1,2,3$) and has the direction cosines proportional to $2,-3,6$.
PART - F
Vi. Answer any two questions.
a) If $y=\left(t^{2}+1\right)^{2}$ is the displacement of a particle. Find its yelocity and acceleration at $t=2$.
b) If 15 kgs of commodity A and 17 kgs of commodity B together cost Rs. 241 and 25 kgs of commodity A and 13 kgs of commodity B together costs Rs. 279. Find the price of each per kg by using row reduced echelon form.
c) If a metallic ball of radius 3 units is enclosed within a cylindrical pipe. Find the equation of the cylinder, if its axis is $\frac{x-1}{2}=\frac{y-2}{1}=\frac{z-3}{2}$.

