https://universitynews.in

SG – 287

26 VI Semester <u>B.A</u>./B.Sc. Examination, Sept./Oct. 2021 (CBCS) (F+R) (2016-17 and Onwards) MATHEMATICS (Paper – VII)

Time: 3 Hours

Max. Marks: 70

Instruction : Answer all Parts.

PART – A

Answer any five questions :

- 1. a) Define a vector space over a field.
 - b) Show that $w = \{(0, 0, z) | Z \in R\}$ is a subspace of $V_3(R)$.
 - c) For what value of K the set of vectors (3, 2, -1), (0, 4, 5) and (6, K, -2) of V₃(R) is linearly dependent.
 - d) Find the matrix of linear transformation $T : V_2(R) \rightarrow V_3(R)$ defined by T(x, y) = (3x y, 2x + 4y, 5x 6y) with respect to the standard bases.
 - e) Write the scalar factors in cylindrical co-ordinate system.
 - f) Solve : $\frac{dx}{zx} = \frac{dy}{yz} = \frac{dz}{xy}$
 - g) Form a partial differential equation by eliminating the arbitrary constants from z = ax + by + ab.
 - h) Solve $\sqrt{p} + \sqrt{q} = 1$.

PART – B

Answer two full questions.

- 2. a) State and prove the necessary and sufficient condition for a non-empty subset w of a vector space V(F) to be a subsapce of V.
 - b) Find the basis and dimension of the subspace spanned by (1, -2, 3) (1, -3, 4), (-1, 1, -2) of the vector space V₃(R).

OR

(5×2=10)

 $(2 \times 10 = 20)$

P.T.O.

SG – 287

-2-

- a) Show that the intersection of any two subspace of a vector space V(F) is also a subspace of V(F).
 - b) Prove that the subset W = {(x_1, x_2, x_3)/ $x_1 + x_2 + x_3 = 0$ } is a subspace of V₃(R).
- 4. a) Find the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^3$ such that T (-1, 1) = (-1, 0, 2), T(2, 1) = (1, 2, 1).
 - b) Find the linear transformation of the matrix $\begin{pmatrix} -1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix}$ relative to the bases B₁ = {(1, 2, 0), (0, -1, 0), (1, -1, 1)} and B₂ = {(1, 0), (2, -1)} OR
- 5. a) Let $T: V_3(R) \rightarrow V_3(R)$ be a linear transformation such that T(1, 0, 0) = (1, 0, 2), T(0, 1, 0) = (1, 1, 0), T(0, 0, 1) = (1, -1, 0). Find the range, null space, rank, nullity and hence verify rank-nullity theorem.
 - b) Show that the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ given by $T(e_1) = e_1 + e_2$, $T(e_2) = e_1 - e_2 + e_3$, $T(e_3) = 3e_1 + 4e_3$ is non-singular. Where $\{e_1, e_2, e_3\}$ is the standard basis of \mathbb{R}^3 .

Answer two full questions :

- 6. a) Verify the condition for integrability and solve $z^2dx + (z^2 2yz) dy + (2y^2 yz xz)dz = 0.$
 - b) Solve (y z)p + (z x)q = x y.
- 7. a) Show that the cylindrical coordinate system is orthogonal curvilinear co-ordinate system.
 - b) Express the vector $\vec{f} = z\hat{i} 2x\hat{j} + y\hat{k}$ in terms of spherical coordinates and find f_r , f_{θ} , f_{ϕ} .

8. a) Solve :
$$\frac{dx}{tanx} = \frac{dy}{tany} = \frac{dz}{tanz}$$
.
b) Solve : $(mz - ny) p + (nx - lz)q = ly - mx$.

(2×10=20)

9. a) Express the vector $\vec{f} = 2x\hat{i} - 2y^2\hat{j} + xz\hat{k}$ in cylindrical coordinate system and find $f_{\rho}, f_{\phi}, f_{z}$.

-3-

b) Express the vector $\vec{f} = z\hat{i} - 2x\hat{j} + y\hat{k}$ in spherical coordinates system and find $f_r, f_{\theta}, f_{\sigma}$.

PART – D

Answer two full questions.

 $(2 \times 10 = 20)$

SG - 287

10. a) Form a partial differential equation by eliminating arbitrary function from z = f(x + ay) + g(x - ay).nex

b) Solve :
$$p^2 - q^2 = x - y$$
.
OR

11. a) Solve
$$(D^2 - 5DD' + 4D'^2)z = \sin (4x + y)$$
.

b) Solve
$$x^2 p^2 + y^2 q^2 = z^2$$
.

12. a) Solve : px + qy = pq by Charpit's method.

b) Solve : $(D^2 - DD' - 6D'^2)z = xy$. OF

13. a) Solve
$$\frac{\partial u}{\partial t} = C^2 \frac{\partial^2 u}{\partial x^2}$$
 subject to the conditions
i) $u(0, t) = 0$, $u(l, t) = 0$ t ≥ 0 .
ii) $u(x, 0) = \frac{100x}{1}$ $0 \le x \le l$.

b) Solve $\frac{\partial^2 u}{\partial t^2} = C^2 \frac{\partial^2 u}{\partial x^2}$ given

i)
$$u(0, t) = 0, u(1, t) = 0$$

ii)
$$u(x, 0) = k (lx - x^2); \left(\frac{\partial u}{\partial t}\right)_{t=0} = 0.$$