VI Semester B.A./B.Sc. Examination, Sept./Oct. 2021 (CBCS) (F+R) (2016-17 and Onwards)
 MATHEMATICS (Paper - VII)

Time: 3 Hours
Max. Marks: 70

Instruction : Answer all Parts.

Answer any five questions :

> PART - A

1. a) Define a vector space over a field.
b) Show that $w=\{(0,0, z) \mid Z \in R\}$ is a subspace of $V_{3}(R)$.
c) For what value of K the set of vectors $(3,2,-1),(0,4,5)$ and $(6, K,-2)$ of $V_{3}(R)$ is linearly dependent.
d) Find the matrix of linear transformation $T: V_{2}(R) \rightarrow V_{3}(R)$ defined by $T(x, y)=(3 x-y, 2 x+4 y, 5 x-6 y)$ with respect to the standard bases.
e) Write the scalar factors in cylindrical co-ordinate system.
f) Solve : $\frac{d x}{z x}=\frac{d y}{y z}=\frac{d z}{x y}$.
g) Form a partial differential equation by eliminating the arbitrary constants from $z=a x+b y+a b$.
h) Solve $\sqrt{p}+\sqrt{q}=1$.
PART - B

Answer two full questions.
2. a) State and prove the necessary and sufficient condition for a non-empty subset w of a vector space $V(F)$ to be a subsapce of V.
b) Find the basis and dimension of the subspace spanned by $(1,-2,3)(1,-3,4)$, $(-1,1,-2)$ of the vector space $V_{3}(R)$.

OR
P.T.O.
3. a) Show that the intersection of any two subspace of a vector space $V(F)$ is also a subspace of $V(F)$.
b) Prove that the subset $W=\left\{\left(x_{1}, x_{2}, x_{3}\right) / x_{1}+x_{2}+x_{3}=0\right\}$ is a subspace of $V_{3}(R)$.
4. a) Find the linear transformation $T: R^{2} \rightarrow R^{3}$ such that $T(-1,1)=(-1,0,2)$, $T(2,1)=(1,2,1)$.
b) Find the linear transformation of the matrix $\left(\begin{array}{rrr}-1 & 2 & 1 \\ 1 & 0 & 3\end{array}\right)$ relative to the bases $B_{1}=\{(1,2,0),(0,-1,0),(1,-1,1)\}$ and $B_{2}=\{(1,0),(2,-1)\}$

OR
5. a) Let $T: V_{3}(R) \rightarrow V_{3}(R)$ be a linear transformation such that $T(1,0,0)=$ $(1,0,2), T(0,1,0)=(1,1,0), T(0,0,1)=(1,-1,0)$. Find the range, null space, rank, nullity and hence verify rank-nullity theorem.
b) Show that the linear transformation $T: R^{3} \rightarrow R^{3}$ given by $T\left(e_{1}\right)=e_{1}+e_{2}$, $T\left(e_{2}\right)=e_{1}-e_{2}+e_{3}, T\left(e_{3}\right)=3 e_{1}+4 e_{3}$ is non-singular. Where $\left\{e_{1}, e_{2}, e_{3}\right\}$ is the standard basis of R^{3}.

PART-C

Answer two full questions :
6. a) Verify the condition for integrability and solve

$$
z^{2} d x+\left(z^{2}-2 y z\right) d y+\left(2 y^{2}-y z-x z\right) d z=0
$$

b) Solve $(y-z) p+(z-x) q=x-y$. OR
7. a) Show that the cylindrical coordinate system is orthogonal curvilinear co-ordinate system.
b) Express the vector $\vec{f}=z \hat{i}-2 x \hat{j}+y \hat{k}$ in terms of spherical coordinates and find $f_{r}, f_{\theta}, f_{\varphi}$.
8. a) Solve : $\frac{d x}{\tan x}=\frac{d y}{\tan y}=\frac{d z}{\tan z}$.
b) Solve: $(m z-n y) p+(n x-l z) q=l y-m x$.

OR
9. a) Express the vector $\vec{f}=2 x \hat{i}-2 y^{2} \hat{j}+x z \hat{k}$ in cylindrical coordinate system and find $f_{\rho}, f_{\varphi}, f_{z}$.
b) Express the vector $\vec{f}=z \hat{i}-2 x \hat{j}+y \hat{k}$ in spherical coordinates system and find $f_{r}, f_{\theta}, f_{\varphi}$.
PART - D

Answer two full questions.
10. a) Form a partial differential equation by eliminating arbitrary function from $z=f(x+a y)+g(x-a y)$.
b) Solve : $p^{2}-q^{2}=x-y$.
OR
11. a) Solve $\left(D^{2}-5 D D^{\prime}+4 D^{\prime 2}\right) z=\sin (4 x+y)$.
b) Solve $x^{2} p^{2}+y^{2} q^{2}=z^{2}$.
12. a) Solve : $p x+q y=p q$ by Charpit's method.
b) Solve: $\left(D^{2}-D D^{\prime}-6 D^{\prime 2}\right) z=x y$.

OR
13. a) Solve $\frac{\partial u}{\partial t}=C^{2} \frac{\partial^{2} u}{\partial x^{2}}$ subject to the conditions
i) $u(0, t)=0, u(t, t)=0 t \geq 0$.
ii) $u(x, 0)=\frac{100 x}{1} \quad 0 \leq x \leq 1$.
b) Solve $\frac{\partial^{2} u}{\partial t^{2}}=C^{2} \frac{\partial^{2} u}{\partial x^{2}}$ given
i) $u(0, t)=0, u(l, t)=0$
ii) $u(x, 0)=k\left(l x-x^{2}\right) ;\left(\frac{\partial u}{\partial t}\right)_{t=0}=0$.

