https://universitynews.in

SG - 288

VI Semester B.A./B.Sc. Examination, September/October 2021 (CBCS) (F + R) (2016-17 and Onwards) Paper – VIII : MATHEMATICS

Time: 3 Hours

Instruction : Answer all Parts.

PART – A

Answer any five questions :

- 1. a) Evaluate : $\lim_{z \to 1+i} (z^2 + 2z)$.
 - b) Prove that $U = \frac{1}{2} \log(x^2 + y^2)$ is harmonic.
 - c) Show that the function defined by $f(z) = \begin{cases} \frac{x^3 y^3}{x^3 + y^3} \end{cases}$ is not continuous at the origin. z = 0
 - d) Define cross ratio of four points.
 - e) Verify Cauchy-Reimann equations for f(z) = sinx coshy + i cosx sinhy.
 - f) State fundamental theorem of Algebra.
 - g) Find the real root of the equation $x^3 x 2 = 0$ over the interval (1.5, 2) upto two approximation by bisection method.
 - h) Using Newton-Raphson method, find the real root of $x^2 + 5x 11 = 0$ in (1, 2) in one iteration only.

PART – B

Answer four full questions :

- 2. a) Show that the locus of arg $\left(\frac{\overline{Z}}{2}\right) = \frac{\pi}{2}$ is a line through the origin.
 - b) State and prove necessary conditions for a function f(x, y) = u(x, y) + iv(x, y)to be analytic.

OR

P.T.O.

 $(4 \times 10 = 40)$

Max. Marks: 70 IBRAF

(5×2=10)

SG - 288 -2-3. a) Evaluate $\lim_{z \to 2e^{\sqrt{3}}} \left(\frac{z^3 + 8}{z^4 + 4z^2 + 16} \right)$. b) Show that $f(z) = \sin z$ is analytic and hence $f'(z) = \cos z$. 4. a) Prove that $u = x^3 - 3xy^2$ is harmonic and find the analytic function whose real part is u(x, y). b) If f(z) = u + iv is an analytic function, then prove that the curves $u(x, y) = c_1$, $u(x, y) = c_2$ form two orthogonal families. OR 5. a) If f(z) = u + iv is analytic, then show that $\left[\frac{\partial}{\partial x} \left| f(z) \right| \right]^2 + \left[\frac{\partial}{\partial v} \left| f(z) \right| \right]^2 = \left| f'(z) \right|^2.$ b) If f(z) = u + iv and $u - v = e^{x}(\cos y - \sin y)$, find f(z) interms of z. 6. a) Evaluate $\int_{(2,5)}^{(2,5)} (3x+y) dx + (2y-x) dy$ along the curve $y = x^2 + 1$. b) State and prove Cauchy's integral formula. OR 🔺 7. a) Evaluate $\int \frac{dz}{z^2 - 4}$ over C : |z| = 1. b) State and prove Cauchy's integral theorem. 8. a) Show that the transformation $w = \frac{1}{z}$ transforms a circle to circle or to a straight line. b) Discuss the transformation of $w = z^2$. OR 9. a) Find the Bilinear transformation which map the points z = 1, i, -1 into w = i, 0, -i.b) Show that the transformation $W = \frac{i-z}{i+z}$ maps the x – axis of the z-plane onto a circle |w| = 1 and points in the half plane y > 0 on the points |w| < 1. https://universitynews.in

-3-

PART - C

Answer two full questions :

- 10. a) Find the root of the equation $x^3 4x + 1 = 0$ by Regula-Falsi method upto three decimal places.
 - b) Using Newton-Raphson method, find the real root of $x^3 + 5x 11 = 0$ near 1 correct to 3 decimal places.

OR

11. a) Solve the equations

27x + 6y - z = 85

6x + 15y + 2z = 72 by Gauss-Seidal Method,

b) Find the largest eigenvalue of the matrix

 $\begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}$ by power method.

12. a) Use Taylor's series method to find y at x = 0.1 considering terms upto the third degree given $\frac{dy}{dx} = x^2 + y^2$ and y(0) = 1.

b) Using modified Euler's method, find y(0.1), given $\frac{dy}{dx} = x^2 + 1$, y(0) = 1.

13. a) Given $\frac{dy}{dx} = \frac{y - x}{y + x}$, with y(0) = 1, find y, approximately for x = 0.1 by

Euler's method in five steps.

b) By using Runge-Kutta method, solve $\frac{dy}{dx} = 3x + \frac{y}{2}$ with y(0) = 1. Compute y(0.2) by taking h = 0.2.

 $(2 \times 10 = 20)$

SG - 288

. K