VI Semester B.A./B.Sc. Examination, September/October 2021 ($\overline{\mathrm{CBC}})(\mathrm{F}+\mathrm{R})$ (2016-17 and Onwards) Paper - VIII : MATHEMATICS

Time : 3 Hours

Max. Marks : 70
Instruction : Answer all Parts.

> PART - A

Answer any five questions:

1. a) Evaluate: $\lim _{z \rightarrow+1+}\left(z^{2}+2 z\right)$.
b) Prove that $U=\frac{1}{2} \log \left(x^{2}+y^{2}\right)$ is harmonic.
c) Show that the function defined by $f(z)=\left\{\begin{array}{ll}\frac{x^{3}-y^{3}}{x^{3}+y^{3}}, & z \neq 0\end{array}\right.$ is not continuous at the origin.

$$
0, \quad z=0
$$

d) Define cross ratio of four points.
e) Verify Cauchy-Reimann equations for $f(z)=\sin x \operatorname{coshy}+i \cos x$ sinhy.
f) State fundamental theorem of Algebra.
g) Find the real root of the equation $x^{3}-x-2=0$ over the interval $(1.5,2)$ upto two approximation by bisection method.
h) Using Newton-Raphson method, find the real root of $x^{2}+5 x-11=0$ in $(1,2)$ in one iteration only.

PART - B

Answer four full questions:
2. a) Show that the locus of $\arg \left(\frac{\bar{z}}{2}\right)=\frac{\pi}{2}$ 'is a line through the origin.
b) State and prove necessary conditions for a function $f(x, y)=u(x, y)+i v(x, y)$ to be analytic.

OR
P.T.O.
3. a) Evaluate $\lim _{z \rightarrow 2 e^{1 \pi / 3}}\left(\frac{z^{3}+8}{z^{4}+4 z^{2}+16}\right)$.
b) Show that $f(z)=\sin z$ is analytic and hence $f^{\prime}(z)=\cos z$.
4. a) Prove that $u=x^{3}-3 x y^{2}$ is harmonic and find the analytic function whose real part is $u(x, y)$.
b) If $f(z)=u+i v$ is an analytic function, then prove that the curves $u(x, y)=c_{1}$, $u(x, y)=c_{2}$ form two orthogonal families.

OR

5. a) If $f(z)=u+i v$ is analytic, then show that

$$
\left[\frac{\partial}{\partial x}|f(z)|\right]^{2}+\left[\frac{\partial}{\partial y}|f(z)|\right]^{2}=\left|f^{\prime}(z)\right|^{2}
$$

b) If $f(z)=u+i v$ and $u-v=e^{x}(\operatorname{cosy}-\sin y)$, find $f(z)$ interms of z.
6. a) Evaluate $\int_{(0,1)}^{(2,5)}(3 x+y) d x+(2 y-x) d y$ along the curve $y=x^{2}+1$.
b) State and prove Cauchy's integral formula.

OR
7. a) Evaluate $\int_{C} \frac{d z}{z^{2}-4}$ over $C:|z|=1$.
b) State and prove Cauchy's integral theorem.
8. a) Show that the transformation $w=\frac{1}{z}$ transforms a circle to circle or to a straight line.
b) Discuss the transformation of $w=z^{2}$.

OR

9. a) Find the Bilinear transformation which map the points $z=1, i,-1$ into $w=i, 0,-i$.
b) Show that the transformation $w=\frac{i-z}{i+z}$ maps the $x-$ axis of the z-plane onto a circle $|w|=1$ and points in the half plane $y>0$ on the points $|w|<1$.
||||||||||||||||||||||||
PART - C

Answer two full questions :

10. a) Find the root of the equation $x^{3}-4 x+1=0$ by Regula-Falsi method upto three decimal places.
b) Using Newton-Raphson method, find the real root of $x^{3}+5 x-11=0$ near 1 correct to 3 decimal places.

$$
\mathrm{OR}
$$

11. a) Solve the equations
$x+y+54 z=110$
$27 x+6 y-z=85$
$6 x+15 y+2 z=72$ by Gauss-Seidal Method.
b) Find the largest eigenvalue of the matrix
$\left[\begin{array}{ccr}25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4\end{array}\right]$ by power method.
12. a) Use Taylor's series method to find y at $x=0.1$ considering terms upto the third degree given $\frac{d y}{d x}=x^{2}+y^{2}$ and $y(0)=1$.
b) Using modified Euler's method, find $y(0.1)$, given $\frac{d y}{d x}=x^{2}+1, y(0)=1$. OR
13. a) Given $\frac{d y}{d x}=\frac{y-x}{y+x}$, with $y(0)=1$, find y, approximately for $x=0.1$ by Euler's method in five steps.
b) By using Runge-Kutta method, solve $\frac{d y}{d x}=3 x+\frac{y}{2}$ with $y(0)=1$. Compute $y(0.2)$ by taking $h=0.2$.
