III Semester B.A./B.Sc. Examination, April/May 2021 (Semester Scheme)
 (CBCS) (F+R) (2015-16 and Onwards)
 MATHEMATICS - III

Time : 3 Hours

Max. Marks : 70
Instruction : Answer all questions.
PART - A

Answer any five questions :

1. a) Find all the left cosets of the subgroup $H=\{0,2,4\}$ of the group $\left(Z_{6},+_{6}\right)$.
b) Find the number of generators of the cyclic group of order 8 .

-

c) Show that the sequence $\left\{1-\frac{1}{n}\right\}$ is monotonically increasing sequencé.
d) State Cauchy's root test for the series of positive terms.
e) Discuss the convergence of the series $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$, .

10 f) Discuss the continuity of the function $f(x)=\frac{1}{x^{2}-4}$ at $x=2$.
g) State Lagrange's mean value theorem.
h) Evaluate $\lim _{x \rightarrow 0} \frac{a^{x}-b^{x}}{x}$.
PART - B

Answer one full question :
2. a) If an element ' a ' of a group G is of order n, then prove that $a^{m}=e$ for some positive integer m iff n divides m. 2
b) Define a $\overline{\text { cyclic group. Show that the multiplicative group of fourth roots of }}$ unity is a cyclic group generated by $\langle i\rangle$. 4
c) State and prove Lagrange's theorem for finite groups.

OR

QP - 235
3. a) Prove that there is one-to-one correspondence between the set of all distinct right cosets and set of all distinct left cosets of a subgroup of a group.
b) If G is a cyclic group of order ' d ' and ' a ' is a generator, then prove that $a^{k}(k<d)$ is also a generator of G if and only if $(k, d)=1$.
c) Prove that a finite group of prime order is cyclic and hence abelian.

PART - C
Answer two full questions :
4. a) Show that the limit of a convergent sequence is unique.
b) Discuss the nature of the sequence $\left\{x^{1 / n}\right\}$.
c) Test the convergence of the sequences
i) $\sqrt{n^{2}+1}-\sqrt{n^{2}-1}$
ii) $\frac{\log (n+1)-\log n}{\sin \left(\frac{1}{n}\right)}$
OR
5. a) Prove that a monotonic increasing sequence bounded above is convergent.
b) Find the limit of the sequence
$\zeta\{0.3,0.33,0.333, \ldots$.$\} .$

c) Show that the sequence $\left\{a_{n}\right\}$ defined by $a_{1}=1, a_{n}=\sqrt{2+a_{n-1}}$ is convergent and converges to 2.
6. a) Discuss the nature of the geometric series $\sum_{n=0}^{\infty} x^{n}$.
b) Discuss the convergence of the series $\frac{1}{3}+\frac{1.2}{3.5}+\frac{1.2 .3}{3.5 .7}+\ldots$.
c) Find the sum to infinity of the series $\frac{1}{6}+\frac{1.4}{6.12}+\frac{1.4 .7}{6.12 .18}+\ldots$. . OR
7. a) State and prove Raabe's test for the series of positive terms. \qquad
b) Test the convergence of the series $\frac{1}{1.2 .3}+\frac{3}{2.3 .4}+\frac{5}{3.4 .5}+\ldots \cdot$.
c) Find the sum to infinity of the series $\frac{5}{1!}+\frac{7}{3!}+\frac{9}{5!}+\ldots$.
PART - D

Answer one full question :
8. a) Show that a function which is continuous in a closed interval attain its bounds.
b) Verify Rolle's theorem for $f(x)=\log \left(\frac{x^{2}+3}{4 x}\right)$ in $[1,3]$. $\quad 4$
c) Evaluate :
i) $\lim _{x \rightarrow 0}(\cos x)^{1 / x^{2}}$
ii) $\lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}-\frac{1}{\sin ^{2} x}\right)$

OR
9. a) State and prove Cauchy's mean value theorem.
b) Discuss the differentiability of

$$
f(x)=\left\{\begin{array}{cl}
x^{2} \sin \left(\frac{1}{x}\right), & \text { for } x \neq 0 \\
0, & \text { for } x=0
\end{array} \text { at } x=0\right.
$$

c) Expand $\log _{e}(1+x)$ upto the term containing x^{4} using Maclaurin's series.

