7

V Semester B.A./B.Sc. Examination, March/April 2021 (Semester Scheme)
 (CBCS) (F + R) (2016-17 and Onwards)
 MATHEMATICS - V

Time : 3 Hours
Instruction : Answer all questions.

Answer any five questions.

Max. Marks : 70
$(5 \times 2=10)$

1. a) In a ring $(R,+, \cdot)$, prove that $a \cdot(b-c)=a \cdot b-a \cdot c \forall a, b, c \in R$.
b) Define field. Give an example.
c) If f is a homomorphism of a ring R into ring R^{\prime} then prove that $f(0)=0^{\prime}$ where 0 is the zero element of R and 0^{\prime} is the zero element of R^{\prime}.
d) Find the divergence of the vector field $\vec{F}=x^{3} z \hat{i}+y^{3} x \hat{j}+z^{3} y \hat{k}$ at (1, 1, -1).
e) Find the maximum directional derivative of $\phi=x^{3} y^{2} z$ at $(1,-2,3)$.
f) Evaluate $\Delta^{3}(1-a x)(1-b x)(1+c x)$.
g) Write the Newton backward interpolation formula.
h) State Simpson's $\frac{3^{\text {th }}}{8}$ rule for the integral $\int_{a}^{b} f(x) d x$.
PART - B

Answer two full questions.
2. a) Prove that the set of all matrices of the form $M=\left\{\left[\begin{array}{ll}a & b \\ 0 & 0\end{array}\right] / a, b \in Q\right\}$ is a non-commutative ring without unity w.r.t. addition and multiplication of matrices.
b) Prove that $\left(z_{6},{ }_{6}, x_{6}\right)$ is a ring w.r.t. $+_{6}$ and x_{6}.

OR
P.t.o.
3. a) Prove that a ring R is without zero divisors if and only if the cancellation laws holds in R.
b) Prove that every field is an integral domain.
4. a) Prove that $\left(z_{5},+_{5}, x_{5}\right)$ is a commutative ring with unity. Is it an integral domain?
b) Prove that the set $S=\left\{\left[\begin{array}{ll}a & 0 \\ b & 0\end{array}\right] / a, b \in z\right\}$ of all 2×2 matrices is a left ideal of the ring R over z. Also show that S is not a right ideal.
OR
5. a) State and prove fundamental theorem of homomorphism.
b) If I is an ideal of the ring R, then prove that the quotient ring R / I is homomorphic image of R with I as its Kernel.
PART - C

Answer two full questions.
($2 \times 10=20$)
6. a) Prove that the surfaces $4 x^{2} y+z^{3}=4$ and $5 x^{2}-2 y z=9$ intersect orthogonally at the point $(1,-1,2)$.
b) Find the directional derivative of $\phi(x, y, z)=x^{2} y z+4 z^{2}$ at the point $(1,-2,-1)$ in the direction of $2 \hat{i}-\hat{j}-2 \hat{k}$.
OR
7. a) Show that $\vec{F}=\left(6 x y+z^{3}\right) \hat{i}+\left(3 x^{2}-z\right) \hat{j}+\left(3 x z^{2}-y\right) \hat{k}$ is irrotational. Find ϕ such that $\vec{F}=\nabla \phi$.
b) If $\vec{F}=\left(3 x^{2} y-z\right) \hat{i}+\left(x z^{3}+y\right) \hat{j}-2 x^{3} z^{2} \hat{k}$. Find curl $(\operatorname{curl} \vec{F})$.
8. a) If $\vec{f}=x^{2} \hat{i}+y^{2} \hat{j}+z^{2} \hat{k}$ and $\vec{g}=y z \hat{i}+z x \hat{j}+x y \hat{k}$, then prove that $\vec{f} \times \vec{g}$ is solenoidal.
b) If ϕ is scalar point function and \vec{F} is vector point function then prove that $\operatorname{curl}(\phi \vec{F})=\phi \operatorname{curl} \vec{F}+(\operatorname{grad} \phi) \times \vec{F}$.

OR
9. a) Prove that (i) $\operatorname{div}(\operatorname{curl} \mid \vec{F})=0$
(ii) curl $(\operatorname{grad} \phi)=0$
b) Prove that $\operatorname{div}(\vec{f} \times \vec{g})=\vec{g} \cdot(\operatorname{curl} \vec{f})-\vec{f} \cdot(\operatorname{curl} \vec{g})$.
PART - D

Answer two full questions.
10. a) Find a second degree polynomial which takes the following data.

\mathbf{x}	1	2	3	4
$\mathbf{f}(\mathbf{x})$	-1	-1	1	5

b) Find $f(84)$ from the following data.

x	40	50	60	70	80	90
$y=f(x)$	184	204	226	250	276	304

OR
11. a) Use the method of separation of symbols to prove that

$$
U_{0}+\frac{U_{1} x}{1!}+\frac{U_{2} x^{2}}{2!}+\frac{U_{3} x^{3}}{3!}+\ldots \infty=e^{x}\left[U_{0}+\frac{x \Delta U_{0}}{1!}+\frac{x^{2} \Delta^{2} U_{0}}{2!}+\ldots \infty\right]
$$

b) Obtain the function whose first difference is $9 x^{2}+11 x+5$.
12. a) Using Newton's divided difference formula. Find $f(10)$ from the following data.

\mathbf{x}	4	7	9	12
$\mathbf{f}(\mathbf{x})$	-43	84	327	1053

b) Evaluate $\int_{0}^{\pi / 2} \sqrt{\cos \theta} \cdot d \theta$ by using Simpson's $\frac{1^{\text {rd }}}{3}$ rule dividing $\left[0, \frac{\pi}{2}\right]$ into six equal parts. OR
13. a) Using Lagrange's interpolation formula. Find $f(2)$ from the following data.

\mathbf{x}	0	1	3	4
$\mathbf{f}(\mathbf{x})$	5	6	50	105

b) Evaluate $\int_{0}^{6} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}$ by using Trapezoidal rule. Divide $[0,6]$ into six sub intervals.

