स्नातक खण्ड-2 (विज्ञान)

PHYSICS (Hons.)

theory papers course shall consist of two Theory papers III and IV each of 75 marks. The pass marks in the two Two practical paken together will be 67 and the examination in each will be of 3 hours duration. There will be in this paper. paper of 50 marks. The pass marks will be 23 and the examination will be of 6 hours duration The following will be the detailed Courses-

Time: 3 Hours	Paper- 111
10 questions to	
THEORY	

Full Marks :75
will be Compulsory. 6 question to be answered. Question number one will be objective (15 Questions) and it group is to be answered. All quell be set from group A, and 3 from group B. Atleast one question from each optics:

Fermat's principl Group-A
6 Questions Interference phenomena by divisi and lens formula. Cardinal points of thick lens and thick lens formula. Fabreyperot Interferometer, L.G. Pion of wave front and division of implitude. Michelson Interferometer. Diffraction-FresnePs and Fraunheffelon Grating. at straight edge and single narrow wire. Fraunhofferion, Half Period Zones. Zone Plate, FresnePs diffraction grating, Concave grating and Eagle's mounting Reffer 's diffraction at n slits circular aperture. Plane diffraction Production of plane, Circularly and elliptically posolarized power of Prism, Telescope and microscope.
Compensator and analysis of elliptically polarised polarized light. NicoPs prism. Quarter wave plate. Babinate's Laser action, Ruby Laser, He-Ne Laser.

ELECTROMAGNETIC THEORY:

Group-B

3 Questions Pressure of radiation. Plane electroming vector, Electromagnetic momentum, Maxwell's stress Tensor, polarised light. Double refraction in onagnetic waves. Reflection, Refraction and total internal reflection of in metals Scattering by free and bound charges.

Time: 3 Hours

Paper-IV
 THEORY:

10. questions to be set, 5 to be answered. Question number Full Marks :75 it will be Compulsory. 2 questions will be set from group-A, 4 from group be objective. (15 . Questions) and question from each group is to be answered. All questions will of question from each group is to be answered. All questions will be of equal marks.

ELECTROSTATICS, MAGNETISM:

Group-A

Boundary Condition at the surface of separation of two dielectrics and refraction of lines of force. Scalar potential in electrostatics. The potential of system of charges. Dipole and Quadruple moment Energy stored in an electrostatic field. Poisson's and Laplace's equation in Cartesian. Polar and cylindrical Coordinates and their solutions for simple geometries. Dielectric polarisation Relation between $D . E$ and P.

Properties of ferromagnetic material. Hysteresis Curve, Method for obtaining B-H Curve, Energy loss per cycle of magnetisation. Magnetic flux density (B) by (a) B.G and search coil (b) Grass root fluxmeter. Energy stored in a magnetic field. Measurement of Susceptibility of liquid by quinke's method. Langevin's and Weiss theories of dia, Para and ferromagnetism.

Group-B

Thermodynamic treatment of see back. Peltier and Thomson effects and their applications. Self inductance and Mutual Inductance. Growth and decay of current in circuits Containing L. C. and R. Simple applications of these circuits Moving coil galvanometer. A periodic and ballistic galvanometers, A.C. and
https://universitynews.int and Complex numbers in A.C. Circuits. Theory, series and parallel resonant
A.C. Circuits Use of Veccits, Wattmeter, A.C. Bridges (i) De Sauty's bridge (ii) Anderson bridge (iii) Carey Circuits. Power in A.C Circuls, We. Three phase A.C. Systems, Mutually Coupled Circuits. Rotating magnetic Foster bridge (iv) Schering bride induction motors. The transformer-Equivalent Circuit and vector diagram. Iron and copper losses in transformer.

Group-C

MODERN PHYSICS :
3 Questions
Measurement of charge by Milkan's method and specific charge of an electron by inomson's method. Natural radio-activity, Rutherford- soddy's Theory of radio-active decay, Geiger Muiller Counter. Discovery of Neutron. Isotopes, Artificial radio activity., Elementary Ideas about nucleus and its structure, Nuclear fission Reactors. Astons mass spectrograph. Cyclotron and Betatron.

Photoelectric emission, Einstein's photoelectric equation. Photo conductive and photo-voltaic cells. Compton effect. Cathode ray Oscilloscope and its uses in amplitude, frequency and phase measurement Soild stale rectifier and one stage R-C amplifier.

Primary and secondary cosmic rays, Penetrating components of cosmic rays. Altitude and latitude variation of cosmic ray Intensity. E. W Asymetry, Cosmic ray showers, Rossi curves. Outline of cascade theory, Origin of cosmic rays.

PRACTICAL PAPER

Time: 6 hrs
The Course shall be include the following experiments.
Full Marks : 50

1. Magnifying power of Telescope.
2. Magnifying power of Microscope,
3. Dip by-
(i) Dip Circle
(ii) Earth's Inductor.
4. Wavelength by Newton's rings.
5. Refractive index by spectrometer.
6. Wavelength of monochromatic light using Biprism.
7. Charactristics of a semi-conductor Diode.
8. Specific rotation by polarimeter.
9. Figure of merit of a suspended Coil galvanometer.
10. Measure of monochromatic light by plane transmission grating using Spectrometer.
11. Measurement of monochromatic light using optical bench.
12. Resolving power of telescope.
13. Calliberation of ammeter and voltmeter by potentiometer.
14. Compare the capacities of capacitors by De Saute's Bridge .
15. B.C. Constant by decrement method.
16. Measurement of low and high resistance.
17. Figure of merit of ballistic galvanometer.
18. Design and study of single stage R.C. coupled amplifier.

> B.Sc. Part-II
> Paper- III(A)
> CHEMISTRY (HONS.)

Full Marks: 50
There will be TEN questions each of ten (10) marks inciuding question No. 1 (one) will be of objective type and compulsory covering the entire syllabus. Three questions will be set from each group out of which FOUR to be answered selecting at least ONE from each group.

GROUP-A

1. SOLID STATE:

Lattice energy its calculations and applications. crystal structure of $\mathrm{NaCl}, \mathrm{KCl} . \mathrm{Zns}$ and diamond. Radius ration rule and co-ordination numbers. Properties of solids: Magnetic properties. Electrical properties and Dielectic properties, Idea of liquid crystals.
2. COLLOIDS:

Definitions, classification, Lyophilic and Lyophobic colloids, Preparation of colloids: pepization, purification of colloids Dialysic, properties of colloids, Brownian Movement, Tyndall effect, electrophoresis, Origin of charge, electrokinetic potential, size determination, coagulation, Hardy schulze rule. Protection of Colloids Goldnumber, Gel. Emulsion and Mecelles.
3. attasi//universitynews.in

Definitions:
auto-catalyition and classification of caialyst, c GROUP-B

1. THERMODYNAMICS:
change for reversof thermodynamic, Carnot theorem, Cornet Cycle. Entropy and its probability, entropy energy and work function, irreversible processes and ideal gases, entropy of mixing of ideal gases, free energy and work function, criterisible processes and ideal gases, entropy of mixing of ideal gases,
equation and its applications.
2. PHASE EQemical reactlons, GIbbs-Helmholtz equation, clausius-clapey
3. Phase rule, terms and
and liquid systems ($\mathrm{Ag}-\mathrm{Pb}$; derivation, one component water and Sulphur systems, two component solid incongruent compounds. $\mathrm{Mg}-\mathrm{Sn}, \mathrm{KI}-\mathrm{H}_{2} \mathrm{O}, \mathrm{FeCl}_{3}-\mathrm{H}, \mathrm{O}$), Eutectic mixture, azeotropic mixture, congruent and 3. DISTRIBUTION LAW:
and applications, modificiow, Factors affecting partition co-efficient, thermodynamic derivation, limitations GROUP-C modification in case of association dissociation and chemical change.

1. CHEMICAL KINETICS:

of activation and its determina reaction rate (Arrhenius equation), effect of catalyst on reaction rate. Energy acetate, saponification of ester and Experimental measurement of order in acid catalysed hydrolysis of methyl 2. CONDUCTANCE: Conductance
conductance, effect of dilutiontes, cell constant, specific conductance, equivalent conductance and Molar independent migration of ions and its types of conductance and their measurement. Kohlrausch's law 3. IONIC EQUILIBRIUM:

Ostwald's Dilution Law
measurement, Relative strength of acination of dissociation constant of acetic with the help of conductance of conductance measurement; solubility prond bases, salt hydrolysis constant, degree of hydrolysis. Application product of water, theory of acid base indicaduct, degree of ionisation and ionic
idicators.

1. ATOMIC STRUCTURE:

Paper-III (B)
 INORGANIC CHEMISTRY
 GROUP-A

Determination of electronic charge and elm ratio. Bohr frequency condition, Dual nature of electrons.
2. CHEMICAL BONDING:
(a) Explanation of valence Bond Theory, Qualitative treatment, simple applications, Sidgwick-Powell theory, structures of $\mathrm{BF}_{3}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{PCl}_{5}, \mathrm{ClF}_{3}, \mathrm{SF}_{4}, \mathrm{SF}_{6}, \mathrm{IF}_{7}, \mathrm{CO}_{3}, \mathrm{NO}_{3} \mathrm{SO}_{4}, \mathrm{I}_{3}$
(b) Metallic bond-Idea of free electron theory and V.B.T. explanation, conductors, semiconductors.
3. COORDINATION CHEMISTRY:

Double salts and co-ordination compounds, I.U. P.A.C- nomenclature of co-ordination compounds including complexes with unsaturated molecules or groups and bridging group. Werner postulates, EAN rule, Valence bond theory of Co-ordination compounds, Isomcrism, Types with examples. Shapes of d-orbitals, C.FT. and its applications, chelates.

GROUP-B

1. General chemistry, structure and bonding of-
(a) Noble gas compounds.
(b) Pseudo halogens and polyhalides.
2. Transition metals and comparative chemistry of-
(a) Sc, Y, La
(b) $\mathrm{Ti}, \mathrm{Zr}, \mathrm{Hf}$
(c) $\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}$
3. Chemistry of Group-IV Elements:
$\mathrm{C}, \mathrm{Si}, \mathrm{Ge}$: Carbides, silicates and tetrahalides idea of fullerenes and zeolites.

GROUP-C

1. SPECTROS COPY:

Elementary idea of principles and simple applications of the following: I-R Spectroscopy, U-V and
2. htANSAMYTIVCASiGHENLSTRY:
(a) Use of complexation reactions in qualitative, inorganic mixture analysis. Organic reagents in inorganic analysis: EDTA, dimethyl glyoxime, Oxine. a-nitroso b-naphthol, cupeferron, thiosalicylic acid.
(b) Theory behind the group separation in inorganic qualitative cationic analysis.
3. (a) Outline of chemistry involved in the following and allied phenomena; cement, steel, water, fuel and industrial gases.
(b) Idea of major chemical pollutants in environment.

Paper-III (C)
 ORGANIC CHEMISTRY

GROUP-A

1. ISOMERISM:

Tautomerism, Keto-enol tautomerism, Estimation of Keto and enolic content. Stereoisomerism, projection formulae elements of symmetry, geometrical and optical isomerism, E-Z and R-S modes of nomenclature, elementary idea of configuration, diastereoisomerism, Asymmetry and dismmctry, walden inversion.
2. Electrophilic substitution in benzene nucleus, mechanism of nucleophilic substitution at saturated carbon.
3. Name reaction with their mechanism; Friedel-craft reactions, Sandmeyer Reactions, Gattermann-koch reactions, Cannizzaro's reaction, Benzoin Condendation, Perkin reaction, Reimer- Tiemann reaction

GROUP-B

1. CARBOHYDRATES:

Nomenclature, classification, structure and configuration of glucose and fructose, Ring structure. Ruff degradation; killiani Fisclrer Synthesis. Osazone formation, mechanism, Epimerisation and interconversion (lower to higher carbohydrate \& vice-versa, Aldose to ketose \& vice-versa.
2. AROMATIC COMPOUNDS:

Aromaticity and Huckel's rule, Preparation and properties of benzene, toluene, benzene sulphonic acid, nitrobenzene, aniline, diazonium salt, phenol benzaldehyde, Bennoic acid.
3. HYDROXY ACIDS:

Lactic acid, citric acid, general methods of preparation and distinction between a and b hydroxy acids, stereochemistry of hydroxy acids.

GROUP-C

1. Synthetic applications of the following reagents in organic chemistry Raney $\mathrm{Ni}, \mathrm{LiAlH}_{4}, \mathrm{Al} \mathrm{CL}$, $\mathrm{Al}\left(\mathrm{OCH}<_{\mathrm{CH}}{ }^{\mathrm{CH} 3}\right)$ and HNO_{2},
2. Brief introduction of TLC, Paper and gas chromatography.
3. (a) Organic polymers and resins
(b) Brief idea of proteins.

DEGREE-II (HONOURS)

Paper-IV
 CHEMISTRY PRACTICAL

[A] VOLUMETRIC ANALYSIS:
(1) Estimate the amount of NaOH and $\mathrm{Na}_{2} \mathrm{CO}_{3}$, each in One Litre of the supplied mixture solution with the help of standard acid volution.
(2) Estimate the amount of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3}, each in One litre of the supplied mixture solution with the help of standard acid solution.
(B) REDOXTITRATION:
(1) Preparation of $\mathrm{N} / 10 \mathrm{KMnO}_{4}$ solution and its standardisation with $\mathrm{N} / 10$ oxalic acid solution.
(2) Estimate the amount of Fe^{2+} in one litre of the supplied Mohr's salt solution USing standard KMnO_{4} solution.
(3) Estimate the amount of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ each in one litre of supplied mixture solution using standard KMnO_{4} solution.
(4) Estimate the amount of Fe^{3+} in one litre of the supplied solution with the help of $\mathrm{K}_{\mathrm{a}} \mathrm{Cr}_{2} \mathrm{O}_{7}$, solution or estimation of $\mathrm{Ni}^{2} \mathrm{SO}^{4}$ and Ba^{2+} in one litre of the given solution gravimetricajly.
(5) Estimate the amount of copper in one litre of supplied solution with the help of standerd $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
2. Preparation Of anyone of the following-
(a) Acetylation of salicylic acid, aniline and P-toluidine.
(b) Benzoylation: Preparation of benzanilide and benzoyl derivative of P-. toluidine.
(c) Nitration: Preparation of p-nitroacetaniliide, Picric acid, and m-di nitrobenzene.
(f) Esterification: Preparation of ethyl benzoate from anthracene.
$\begin{aligned} & \text { Note Book and }\end{aligned}$
$\begin{aligned} & \text { (ii) Benzoic, acid from benzaldehyde and } \\ & \end{aligned}$
(i) Benilroaniline from mela di nitrobenzene,

There will be twelve quest B.A./B.Sc. Part-ll
from each group. One question will to be set and Sixics (HONS)
be of twenty marks an question will be objectivel and Six to be answered in each paper selecting at least one Time: 3 Hours

Paper-III
Full Marks: 100

1. Group-A:
2. Group-B:
3. Group-C:

REAL ANALYSIS:

Dedkind's Theory of rea

Real Analysis	
Infinite Series	$:$
Abstract Algebra :	4 Ques.
	3 Ques.
	4 Ques.

mumber, sequence and its convergen, algebraic and order properties of real no. archmedian properties of monotonic sequence, cantor's constructio, Cauchy's sequence, Cauchy's general principle of convergence, Continuity and differentiability
continuous funnctions, Rollers the of a function of single variables. Properties of continuous and disfunctions.

INFINITE SERIES:

Binary operation, notion of a group, abelian and non-abelian groups with example: Different ways of defining a group and their equivalence, Concept of a subgroup an cylic groups, inter section of subgroups. Cyclic subgroups Cosets, Order of an element, lagrange's Theorem, Group of residue classes,' permutation. and isomorphism theorems for groups, factor group,' fundamental theorem. Concept of a ring. Integral domain and group,' fundamental theorem.
Ring of residue classes, ring and field with examples, Divisor of Zero, a finite domain as a field. fundamental theorem of homomorphism of rings.

Time: 3 Hours

1.	Group-A	Diff. Equation	
2.	Group-B	Vector Calculus	
3.	Group-C	Statics (Via Vector)	
4.	Group-D	$:$	Dynamics

Paper-IV
test, leibnizest, Gauss, Best, Kummer's test, De Morgon's and Bertrand, Casthy Condensation test, Integral convergence. Group-C

ABSTRACT ALGEBRA:

Ring of residue classes. ring of matrice

Group-B

Paperv

1. Group-A
2. Group-B
3. Group-C
4. Group-D

Diff. Equation
Vector Calculus
Dynaics : 3 Ques.
Dynamics : 3 Ques.

Group-A

Full Marks: 100

DIFF. EQUATIONS:

Formation and solution of differential equation, Diff equation of 1st order and 1st degree. Separation of variables, Homogeneous equations. Exact Differential Equations of 1st order but not of the first degree, orthogonal trajectory, singular solution. Linear differential Equations of 2nd order withconstant co-efficient, Complementary functions and particular integrals. Application of differential equations.

Group-B

VECTOR CALCULUS:

Product of three and four vectors. Differentiation of a vector point function, Differention of product of vectors, gradient, Divergence and cure of a vector functions and its. deductions, Moment of a localized vector, about a point, scalar moment of a vector about a directed line, integral ofa vector functions.

Scalar triple product and its geometrical interpretation. Vector triple product, scalar and vector products
of fattp\&ecturiversitynnews.in force, moment of a force about a point and angular differentiation of vector point function. Differentiation of product of vectors, Gradient of a scalar field, Divergence and curve of vector functions.

Group-C

STATICS (VIA-VECTOR)

Reduction of a force system to a force and a couple, Equation of the resultant General conditions of equilibrium of a system of forces acting in one plane upon a rigs body. Asiatic centre. Principle of Virfual work for any system of forces in one plane and its converse, omission of the force. The Common Centerary and stability of equilibrium.

Group-D

DYNAMICS

Simple Harmonic Motion, Simple Pendulum, Elastic Springs and springs, Hooke's law, Component of Velocities and acceleration. Cartesian redial and transverse velocities and acceleration, tangential and normal velocities and acceleration.

Motion of a particle under Central force, differential equation of Central Orbit in polar and pedal forms, Newton Laws of gravitation and planetary orbit, Keplar's Laws of planetary motion.
Books Recommended:

1. Elementary Differnetial Equation- W.E. Boyee \& R.C. Diprima, Wiley's publication.
2. Advance Calculus-Folland, Pearson Education
3. Advance Calculus-Kaplan, Person-Educaiton.
4. The Theory of Differential Equation-Kelly \& Peterson.

B.Sc. Part-II :

Botany Honours
The paper will consist often questions, out of which Question No. 1 will be objective type and compulsory covering the entire syllabus. Out of remaining 9 questions five questions shall be from Group-A and four from Group-B. Four questions has to be answered besides Question No. 1 selecting atleast two questions from each groups.

Group-A: PLANT PHYSIOLOGY

1. Physiology of Plant Cell: Colloidal system, imbibitions. diffusion. osmosis and plasmolysis.
2. Plant-water relationships: water potential and chemical potential, transpiration and its significance, factors affecting transpiration, mechanism of stomata movement.
3. Mineral nutrition: Criteria of essentiality of elements macro and role of micro nutrients, essential elements, mineral deficiency and plant disorders, nutrient uptake and transport mechanisms,
4. Photosynthesis: Historical background and its significance, structure of photosynthetic apparatus, photosynthetic pigments, accessory pigments reaction centre complexes. photochemical reactions, photosynthetic electron transport, phtophosphoryl'ation, the calvin cycle- C_{4} cycle
5. Respiration: Glycol sis. TCA cycle and its regulation, electron transport system, pentose phosphate pathway .cyanide-resistant respiration,
6. Transport of organic substances. Mechanism of translocation in the phloem.
7. Nitrogen metabolism: Biological nitrogen fixation, reduction of N_{2} into ammonia, nit-genes, regulation of nitrate reductive and nitrogenise, nitrate and ammonium assimilation.
8. Growth and development: General aspect of definitions, Phases of growth, kinetics of growth, physiology of dormancy and seed germination, concept of photoperiodic.
9. Physiology of flowering: Origen concept of phytohormones and their role, verbalization, senescence and fruit ripening. physiological role and mechanism of action of phytohormones-Auxins, Cytokines, Gibberellins. Abscise acid and Ethylene, phytomorphogencsis, phytochrome, their role and mechanism of action. Signal transduction-basic concept, plant movement-tropic and mastic. Biological clock.

Group- B:ECOLOGY

1. Introduction: Ecological factors (Biotic and biotic). ecological amplitude. triggering factors-soil. water and atmosphere.
2. Ecological adaptation: Ecological groups of plants: Hydrophone, Xerophytes. Halophytes.
3. Community: Definition, composition, development of community and its structure. Method of study of communities. Succession such as hydro sere, Litho sere.
4. Ecosystem : Concept. component and organization, energy flow, ecological efficiencies, cycling of C. N and P . characterization and structure of ecosystem, biotic and biotic components, their interrelationships, the tropic organization. auto trophy, heterotrophy, parasitism and detritus, food chain, food web and ecological pyramid.
5. Flow of Energy and materials: Flow of energy and materials within ecosystem', models of energy flow e.cosystem.productivity, biogeochemical cycles, major types of ecosystem.
https://universitynews.in

Ten questions has to be set out of which Question No. I will be of objective type and compulsory the Graire syllabus. Out of remaining 9 questions, There will be five questions from Group-A and four from each group. quens has to be answered beside wion
Group-A: DEVELOPM ENTS OF PLANTS

1. Organization of the higher planTs
 The shoot and the root system, varity:

2. Meristems and development: Theories of in habit and longevity; environmental influences. functions,
3. Range of forms and structure of root, stem and leaf, their tissues and functions, mechanical tissues,
4. Secondary growth in Plants: Vation to environment.

Pholem and Periderm, Anomalous ar cambium, secondary xylem (basic structure of wood), secondary
Dracaena).
5. Embryology and Developmental Processes:

Microsporogensis and development of male gametophyte, megasporogenesis and development
offemale gametophyre, endosperm (morphological nature) and embryogeny An outline of experimental
embryology-anther and embryo culture.
Group-B: PLANT RESOURCE UTILIZATION

1. Plant biodiversity: Concept, status utilization in India.
2. Origin of crop Plants and historical perspective of economic Botany and Ethno botany.
3. Domestical of Plants: Primary and secondary centres of biodiversity, new introduction.
4. General account of Seeds producing oils- mustard, groundnut, soyabean and coconut, PulsesChickpea (Bengal Urad Gram), red gram (Arhar), gram, pea, masoor and mung, cereals-rice, wheat, maize, sorghum, bajara, sugar yielding-sugarcane, fibre yielding cotton, jute, coir, yegetables-potato, brinjal, Timber and firewood-any ten species of your locality, Medicinal plant species at least 10 species of your locality locality Rubber yielding plants, essential oil yielding plants. Ornamental Plants: Familiarity with seasonals and perennials species grown in your locality. Recycling of wastes and biogas resources.

PRACTICAL PAPER

Based on Paper-III \& IV
Time 4 Hours

1. Experiments based on (i) Osmosis, Diffusion, Transpiration, photosynthesis, Respiration Full marks-50 of chloroplast pigments by either paper chromatography or solvent method
OR
OR
To extract enzymes and to study their activity-amylase, lipase, acid phosphatase, catalase andperoxidase.OR, Bioassay of plant hormones-auxin, ethylene, G.A., ABA and cytokinin.12
2. Determination of the minimum size of the quadrate by species area curve method.
OR, To study ecological adaptations in plants
OR
To study selected soil properties such (anyone) as texture, pH , carbonate, nitrate, base deficiency and reductivity. 12
3. Internal anatomy of Primary and secondary structure of angios ermic plants-normal and abnormal characters.
OR, Embryo dissection (e.g Tridax procumbens) 12
4. To comment upon spots ($1-6$) based on developments of plants plant resource utilizations.
5. Class records 05
6. Viva-voce 03

B.SC. Part-II
 zoology
 SUBSIDIARY/GENERALCOURSE Paper-IIA
 (THEORY)

Time: 3 Hours
In all ten questions are to be set out of which number 1 and 2 consists of objective $(1 \times 15$ Full Marks: 75 short answer (3×5) questions respectively and both shall span over the whole syllabus in the paparks) and would be required to answer five questions out of which question number 1 and 2 shall be compulsory 1. COMPARATIVE ANATOMY:

Study of following organ system in major Vertebrate groups :-
(i) Integument: Its derivatives and function.
(ii) Gastrointestinal tract.
(iii) Respiratory System.
(iv) Hear, Aortic Arches.
(v) Brain.
(vi) Evolution and fate of kidney, urinogenital ducts, gonads
2. EMBRYOLOGY
(vi) Fertilization:
(vii) Types of Vertebrate eggs early cleavage
(viii) Development of Amphioxus (upto the formation of coelom)
(ix) Development of chick (upto 3 germinal layers).
(x) Development and function of extra-embryonic membrance in chick.
(xi) Placenta in mammals-its development, types and function.
(xii) Organogenesis of Heart, Brain and Eye in Chick embryo.

