

# ED-2806

M.A./M.Sc. (Final) Examination, 2021

# MATHEMATICS

Compulsory

Paper - I

Integration Theory and Functional Analysis

Time : Three Hours] [Maximum Marks : 100

**Note** : Answer any **two** parts from each question. All questions carry equal marks.

#### Unit-I

1. (a) State and prove Hahn decomposition theorem.

- (b) State and prove Riesz representation theorem.
- (c) State and prove Fubini's theorem.

**DRG\_26**(4)

(Turn Over)

AS

### (2)

#### Unit-II

- 2. (a) Let  $\mu$  be a finite measure defined on a  $\sigma$  algebra  $\mathcal{A}$  which contains all the baire sets for locally compact space X. If  $\mu$  is inner regular, then it is regular.
  - (b) Let  $\mu$  be a measure defined on a  $\sigma$ algebra  $\mathscr{A}$  containing the baire sets. Assume that eigher  $\mu$  is quasi regular or  $\mu$  is inner regular. Then for each  $E \subset \mathscr{A}$ with  $\mu(E) < \infty$  there is a baire set B with

 $\mu \left( E \Delta B \right) = 0$ 

(c) The intersection of a sequence of inner regular sets of finite measure is inner regular. Also the intersection of a decreasing sequence of outer regular sets of finite measure is outer regular.

## Unit-III

3. (a) Let M be closed linear subspace of a normed linear space N. If the norm of the coset x + M in the quotient space N/M is defiend by

 $||x + M|| = \inf \{||x + m|| : m \in M\}$ 

Then N/M is normed linear space. Further if N is a Banach space, then so is N/M.

DRG\_26\_(4)

(Continued)

## (3)

- (b) Show that all norms are equivalent on a finite dimensional space.
- (c) Let X and Y be normed linear spaces and T a linear transformation on X into Y. Then T is continuous either at every point of X or at no pont of X. It is continuous on X if and only if there is a constant M such that

 $||T_x|| < M ||x|| \text{ for every } x \text{ in } X.$ 

## Unit-IV

- 4. (a) State and prove Hahn Banach theorem for real linear space.
  - (b) Let  $\{T_n\}$  be a sequence of compact linear operators from a normed space X into a Banach space Y and T be a bounded linear operator,  $T: X \to Y$  such that  $||T_n T|| \to 0$  as  $n \to \infty$ , then the limit operator T is compact.

(c) State and prove closed range theorem.

#### Unit-V

- 5. (a) State and prove projection theorem.
  - (b) If H is a Hilbert space, then H is reflexive.

**DRG\_26**(4)

(Turn Over)

## (4)

(c) Any arbitrary operator T on a Hilbert space H can be uniquely expressed as  $T = T_1 + iT_2$ , where  $T_1$  and  $T_2$  are self adjoint operator.

https://think.

**DRG\_26**(4)

100