Roll No.

ED-2810

M. A./M. Sc. (Final) EXAMINATION, 2021

MATHEMATICS

(Optional)

Paper Fourth (i)

(Operations Research)

Time: Three Hours

Maximum Marks: 100

Note : All questions are compulsory. Attempt any *two* parts from each question. All questions carry equal marks.

Unit—I

1. (a) Use two-phase simplex method to solve the following Linear Programming Problem :

Maximize:

$$z = 5x_1 + 8x_2$$

Subject to the constraints:

$$3x_1 + 2x_2 \ge 3$$

$$x_1 + 4x_2 \ge 4$$

$$x_1 + x_2 \le 5;$$

$$x_1, x_2 \ge 0$$

(b) Use dual simplex method to solve the L.P.P.

Minimize:

$$z = x_1 + 2x_2 + 3x_3$$

Subject to the constraints:

$$x_1 - x_2 + x_3 \ge 4$$

$$x_1 + x_2 + 2x_3 \le 8$$

$$x_2 - x_3 \ge 2$$

$$x_1, x_2, x_3 \ge 0$$

(c) What is Goal Programming? Clearly state its assumptions.

Unit—II

2. (a) Solve the following transportation problem:

From	То			Available
	A	В	C	Tivanable
I	6	8	4	14
II	4	9	8	12
III	1	2	6	5
Demand	6	10	15	

(b) Solve the following assignment problem:

	I	II	III	IV
A	10	12	19	11
В	5	10	7	8
C	12	14	13	11
D	8	15	11	9

(c) Distinguish between PERT and CPM. What is a critical Path?

Unit—III

3. (a) Use dynamic programming to solve the following L. P. P.:

Maximize:

$$z = 3x_1 + 5x_2$$

Subject to the constraints:

$$x_1 \leq 4$$

$$x_2 \leq 6$$

$$3x_1 + 2x_2 \le 18$$

and $x_1, x_2 \ge 0$.

Solve the following game by linear programming (b) technique:

Player B

Player A
$$\begin{bmatrix}
1 & -1 & 3 \\
3 & 5 & -3 \\
6 & 2 & -2
\end{bmatrix}$$

(c) Find the optimum integer solution to the following

Maximize:

$$z = x_1 + 4x_2$$

Subject to the constraints:

$$2x_1 + 4x_2 \le 7$$

$$5x_1 + 3x_2 \le 15$$

 $x_1, x_2 \ge 0$ and are integers.

Unit-IV

- Describe input-output analysis of industries. 4. (a)
 - Explain Petroleum Refinery operation as a L. P. P. (b)
 - Explain briefly the blending problem as linear (c) programming.

Unit—V

5. (a) Use the Kuhn-Tuker conditions to solve following non-linear programming problem:

Maximize:

$$z = 2x_1 - x_1^2 + x_2$$
e constraints:
$$2x_1 + 3x_2 \le 6$$

$$2x_1 + x_2 \le 4$$
0.

Subject to the constraints:

$$2x_1 + 3x_2 \le 6$$

$$2x_1 + x_2 \le 4$$

and $x_1, x_2 \ge 0$.

- Derive the Kuhn-Tuker conditions for the quadratic (b) programming problem.
- (c) Use Beale's method to solve the following NLPP: Minimize:

$$z = 6 - 6x_1 + 2x_1^2 - 2x_1x_2 + 2x_2^2$$

Subject to the constraints:

$$x_1 + x_2 \le 2$$

and $x_1, x_2 \ge 0$.

ED-2810