

ED-2807

M.A./M.Sc. (Final) Examination, 2021

MATHEMATICS

Compulsory

Paper - II

Partial Differential Equations and Mechanics

Time : Three Hours] [Maximum Marks : 100

Note : Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

(a) (i) Derive Non Homogeneous problem for transport equation.

- (*ii*) State and prove the mean value formula for Laplace's equation.
- (b) Derive fundamental solution for Heat equation.

DRG_38_(4)

(Turn Over)

(2)

(c) Obtain solution for n = 3 of wave equation by spherical means.

Unit-II

- **2.** (*a*) (*i*) State and prove the Hopf Lax formula.
 - (*ii*) The function $X(\cdot)$ and $P(\cdot)$ satisfy Hamilton's equation

 $\dot{X}(s) = D_P H(P(s), X(s))$ $\dot{P}(s) = -D_x H(P(s), X(s))$ for $0 \le s \le t$, furthermore mapping $S \rightarrow H(P(s), X(s))$ constant.

- (b) Derive Barenblatt solution to the porous medium equation.
- (c) State and prove the Cauchy-Kovalevskaya theorem.

Unit-III

- 3. (a) Derive equation of motion in generalized co-ordinates for Holonomic dynamical system.
 - (b) Derive Euler-Poisson equation.
 - (c) Derive Routh's equation of motion.

DRG_38_(4)

(Continued)

the

is

(3)

Unit-IV

- 4. (a) Derive principle of Least action.
 - (b) The transformation equations between two sets of co-ordinates are

$$Q = \log(1 + \sqrt{q} \cos p),$$
$$P = 2(1 + \sqrt{q} \cos p)\sqrt{q} \sin p$$

show that

- (i) These transformations are canonical if q, p are canonical.
- (*ii*) The generating function

$$F_3 = -\left(C^{\theta} - 1\right)^2 \tan p$$

(c) Derive invariance of Lagrange's bracket's under canonical transformation.

Unit-V

- 5. (a) To find the attraction of a thin uniform spherical shell of an external, internal and surface point *P*.
 - (b) Derive Poisson's equation for spherical polar co-ordinates.
 - (c) (i) Derive relation between the potential and attraction.

DRG_38_(4)

(Turn Over)

(4)

(ii) The density of an elliptic Lamina varies as the distance from the major axis, the mass at a unit element of area at a unit distance being μ . Show

DRG_38_(4)

100