ED-2807

M.A./M.Sc. (Final) Examination, 2021

MATHEMATICS

Compulsory
Paper - II

Partial Differential Equations and Mechanics

Time : Three Hours]
[Maximum Marks : 100
Note : Answer any two parts from each question. All questions carry equal marks.

Unit-I

1. (a) (i) Derive Non Homogeneous problem for transport equation.
(ii) State and prove the mean value formula for Laplace's equation.
(b) Derive fundamental solution for Heat equation.

DRG_38_(4)
(Turn Over)

(2)

(c) Obtain solution for $n=3$ of wave equation by spherical means.

Unit-II

2. (a) (i) State and prove the Hopf Lax formula.
(ii) The function $X(\cdot)$ and $P(\cdot)$ satisfy Hamilton's equation
$\dot{X}(s)=D_{P} H(P(s), X(s))$
$\dot{P}(s)=-D_{x} H(P(s), X(s))$
for $0 \leq s \leq t$, furthermore the
mapping $\quad S \rightarrow H(P(s), X(s)) \quad$ is constant.
(b) Derive Barenblatt solution to the porous medium equation.
(c) State and prove the Cauchy-Kovalevskaya theorem.

Unit-III

3. (a) Derive equation of motion in generalized co-ordinates for Holonomic dynamical system.
(b) Derive Euler-Poisson equation.
(c) Derive Routh's equation of motion.

(3)

Unit-IV

4. (a) Derive principle of Least action.
(b) The transformation equations between two sets of co-ordinates are

$$
Q=\log (1+\sqrt{q} \cos p)
$$

$$
P=2(1+\sqrt{q} \cos p) \sqrt{q} \sin p
$$

show that
(i) These transformations are canonical if q, p are canonical.
(ii) The generating function

$$
F_{3}=-\left(C^{\theta}-1\right)^{2} \tan p
$$

(c) Derive invariance of Lagrange's bracket's under canonical transformation.

Unit-V

5. (a) To find the attraction of a thin uniform spherical shell of an external, internal and surface point P.
(b) Derive Poisson's equation for spherical polar co-ordinates.
(c) (i) Derive relation between the potential and attraction.
(4)
(ii) The density of an elliptic Lamina varies as the distance from the major axis, the mass at a unit element of area at a unit distance being μ. Show that the potential due to the Lamina at the focus is $2 Y \mu b^{2}$.
