

ED-2804

M.A./M.Sc. (Previous) Examination, 2021

MATHEMATICS

Paper - IV

Complex Analysis

Time: Three Hours] [Maximum Marks: 100

Note: Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

- 1. (a) State and prove Laurent's theorem.
 - (b) Prove that equation $2z^5 + 8z 1 = 0$ has one real root in |z| < 1 and four roots lie between the circles |z| = 1, and |z| = 2.
 - (c) Let f(z) be analytic in a neighbourhood of z_0 and $f'(z_0) \neq 0$, then the relation w = f(z) defines z as analytic function $f^{-1}(w)$ in some neighbourhood of the point $w_0 = f(z_0)$.

DRG_37_(3)

(Turn Over)

(2)

Unit-II

2. (a) If 0 < a < 1, then use the method of contour integration to evaluate

$$\int_0^\infty \frac{x^{a-1}}{1-x} dx$$

(b) Find the image of the circle |z-2|=2 under the Mobius transformation

$$w = \frac{z}{z+1}$$

(c) State and prove Hurwitz's theorem.

Unit-HI

3. (a) For Re z > 1, prove that

$$\zeta(z) \cdot \Gamma z = \int_0^\infty \left(e^t - 1 \right)^{-1} t^{z-1} dt$$

(b) Let f(z) be an analytic function in a domain D containing a segment of the x-axis and is symmetric to the x-axis. The show that

$$\overline{f(z)} = -f(\overline{z}), \ z \in D$$

if and only if f(x) is purely imaginary for each point on the segment of x-axis.

DRG_37_(3)

(Continued)

(3)

(c) Let $D = \{z : |z| < 1\}$ be the unit disk and suppose that $f : \partial D \to \mathbb{R}$ is a continuous function, then there iD a continuous function $u : \overline{D} \to \mathbb{R}$ such that u(z) is harmonic in D.

Unit-IV

- **4.** (a) State and prove Poisson-Jensen formula.
 - (b) What do you mean by exponents of convergence? If f is an entire function of finite order λ then f has finite genus $\mu \leq \lambda$.
 - (c) The order of a canonical product is equal to the exponent of convergence of its zeros.

Unit-V

- 5. (a) Let f be an analytic function in a region containing $\overline{B}(0;R)$, then f(B(0;R) contains a disk of radious $\frac{1}{72} \cdot R |f'(0)|$.
 - (b) State and prove Great Picard theorem.
 - (c) Define univalent function and show that a univalent function that maps $|z| < \infty$ onto $|w| < \infty$ must be linear.

DRG_37_(3)