

ED-322

M.Sc. 1st Semester Examination, March-April 2021

COMPUTER SCIENCE

Paper - I

Mathematical Foundation of Computer Science

Time : Three Hours] [Maximum Marks : 100

Note : Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

1. (a) Prove that :

(i)
$$\sim (p \lor q) \Leftrightarrow (\sim p) \land (\sim q)$$

(*ii*)
$$\sim (p \land q) \Leftrightarrow (\sim p) \lor (\sim q)$$

- (b) Explain the following terms and also give example to explain them:
 - (i) Quantifier
 - (ii) Negation of a Quantifier

DRG_46_(4)

(Turn Over)

(2)

(c) Let T be the set of all triangles in a plane and $R = \{(a, b) \mid \text{area of } \Delta a = \text{area of } \Delta b\};$ that is a R b if and only if area of $\Delta a = \text{area of } \Delta b$. Prove that R is an equivalence relation.

Unit-II

- 2. (a) A lattice L is distributive if and only if $(a \lor b) \land (b \lor c) \land (c \lor a) = (a \land b) \lor (b \land c) \lor (c \land a)$ $\forall a, b, c, \in L.$
 - (b) Let (L, ∨, ∧) be an algebraic system, where ∨ and ∧ are binary operations satisfying the absorption law. Show that ∨ and ∧ also satisfy the idempotent law.
 - (c) If $(B, +, \cdot, ')$ is a Boolean algebra, then prove that the following statements are equivalent :

(i)
$$a \cdot b' = 0$$

(ii) $a + b = b$
(iii) $a' + b = 1$
(iv) $a \cdot b = a$

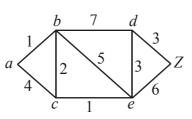
Unit-III

(a) Prove that the inverse of the product of two elements of a group is the product of the inverse taken in the reverse order i.e. (ab)⁻¹ = b⁻¹ a⁻¹ ∀ a, b ∈ G.

DRG_46(4)

(Continued)

(3)

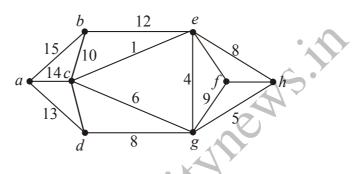

(*b*) Define Grammar. Find the phase-structure grammar that generate the set :

 $L = \{a^n \ b^{2n}, n \ge 1\}$

(c) Show that the order of a subgroup of a finite group divides the order of the group.

Unit-IV

- **4.** (*a*) Prove that in any graph, the number of vertices of odd degree is always even.
 - (b) Prove that if the intersection of two path in a graph is a disconnected graph. Show that the union of the two path has at least one circuit.
 - (c) Write an algorithm for shortest path in weighted graph and use it to find shortest path from a to z in the graph shown in figure where number associated with the edges are the weights.


DRG_46(4)

(Turn Over)

(4)

Unit-V

5. (a) Find the minimum spanning tree for the graph :

- (b) Prove that A tree with n vertices has (n-1) edges.
- (c) Express the following algebraic expression in binary tree :
 - (i) (x-y) + ((y+z) + w)

(*ii*) (((
$$a \times b$$
) + c) – d) × (e + f)

DRG_46_(4)

AN'S

120