Roll No.

DD-451

M. Sc. (Second Semester) EXAMINATION, May-June, 2020

PHYSICS

(Quantum Mechanics-I)

Time: Three Hours

Maximum Marks: 80

Note: Attempt *five* questions in all, selecting *one* question from each Unit. All questions carry equal marks.

Unit-I

 Discuss uncertainty relations and states with minimum uncertainty product.

Or

2. Derive time independent and time dependent Schrödinger equation for a free particle in one dimension. 16

Unit-II

- 3. (a) Discuss representation of states and dynamical variables in quantum mechanics.
 - (b) Show that the necessary and sufficient condition for two operators to have simultaneous eigen functions is that they commute.

(B-17) P. T. O.

Or

- Discuss completeness and normalization of eigen 4. (a) functions.
 - For three operators A, B and C, prove the (b) commutation relation:

$$[AB, C] = A [B, C] + [A, C] B.$$

If A and B are two operators, then show that: (c)

$$\begin{bmatrix} A, B^{-1} \end{bmatrix} = -B^{-1} \begin{bmatrix} A, B \end{bmatrix} B^{-1}$$
Unit—III

- 5. Starting from commutation relationship of angular momentum operators, prove:
 - J² commutes with J₊ and J₋

8

(b)
$$[J_+, J_-] = 2J_z \hbar$$

(b)
$$[J_{+}, J_{-}] = 2J_{z} \hbar$$

(c) $J^{2} = \frac{1}{2} (J_{+} J_{-} + J_{-} J_{+}) + J_{z}^{2}$

6. If σ_x, σ_y and σ_z are Pauli's matrices, evaluate σ_x, σ_y 16 and σ_z .

Unit-IV

Schrödinger equation with spherically 7. Write the symmetric potential in the spherical co-ordinates. By separation of variables method. Write three independent equation for radial and angular $(\theta \& d)$ equations. 16

https://universitynews.in/

(B-17)

https://universitynews.in/

[3]

Or

8. Compute the expectation value of $\frac{1}{r}$ i.e. $\left\langle \frac{1}{r} \right\rangle$ in the ground state of Hydrogen atom. Also compute the most probable value of r in this state, given that the wave function:

$$\psi_{100} = \sqrt{\frac{1}{\pi a_0^3}} e^{-\frac{r}{a_0}},$$
Bohr radius.
Unit—V

where a_0 is the Bohr radius.

16

Unit-V

9. Find the energy spectrum of a system whose Hamiltonian is:

$$H = \frac{-\hbar^2}{2m} \frac{d^2}{dx^2} + \frac{1}{2} m\omega^2 x^2 + ax^3 + bx^4,$$

where 'a' and 'b' are small constants using perturbation theory upto first order. 16

10. Evaluate first order energy and wave function using time independent perturbation theory for non-degenerate 16 system.

370