Roll No.

ED-2758

B. A./B. Sc./B. Sc. B. Ed. (Part-III)

 EXAMINATION, 2021
MATHEMATICS

Paper First
(Analysis)
Time : Three Hours
Maximum Marks : 50
नोट : प्रत्येक प्रश्न से दो भाग हल कीजिए। सभी प्रश्नों के अंक समान हैं।
Attempt any two parts from each question. All questions carry equal marks.

(UNIT-1)
(अ) दर्शाइये कि निम्नलिखित श्रेणी अभिसारी है :

$$
2-\frac{3}{2 \sqrt{2}}+\frac{4}{3 \sqrt{3}}-\frac{5}{4 \sqrt{4}}+\ldots \ldots \ldots
$$

Show that the following series is convergent :

$$
2-\frac{3}{2 \sqrt{2}}+\frac{4}{3 \sqrt{3}}-\frac{5}{4 \sqrt{4}}+
$$

> Р. Т. O.
(ब) दर्शाइये कि निम्नलिखित फलन मूल बिन्दु पर संतत है, किन्तु अवकलनीय नहीं है :

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x^{3}-y^{3}}{x^{2}+y^{2}}, & \text { यदि }(x, y) \neq(0,0) \\
0, & \text { अन्यथा }
\end{array}\right.
$$

Show that the following function is continuous but not differentiable at origin :

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x^{3}-y^{3}}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0) \\
0, & \text { otherwise }
\end{array}\right.
$$

(स) फलन :

$$
\begin{gathered}
f(x)=x^{2},-\pi<x<\pi \\
f(x+2 \pi)=f(x)
\end{gathered}
$$

तथा
की फूरियर श्रेणी ज्ञात कीजिए।
Find the Fourier series of function :

$$
\begin{gathered}
f(x)=x^{2},-\pi<x<\pi \\
\text { and } \\
f(x+2 \pi)=f(x) . \\
\text { इकाई-2 } \\
\text { (UNIT-2) }
\end{gathered}
$$

यदि :

$$
f(x)=x^{2}, x \in[0, a], a>0
$$

दर्शाइये कि :

तथा

$$
\begin{aligned}
& f \in \mathrm{R}[0, a] \\
& \qquad \int_{0}^{a} x^{2} d x=\frac{a^{3}}{3}
\end{aligned}
$$

If

$$
f(x)=x^{2}, x \in[0, a], a>0
$$

show that :

$$
f \in \mathrm{R}[0, a]
$$

and

$$
\int_{0}^{a} x^{2} d x=\frac{a^{3}}{3}
$$

(ब) निम्नलिखित समाकल के अभिसरण के लिए परीक्षण कीजिए :

$$
\int_{0}^{\infty} \frac{\cos x}{1+x^{2}} d x
$$

Test the convergence of the following :

$$
\int_{0}^{\infty} \frac{\cos x}{1+x^{2}} d x
$$

(स) यदि $f(x, t)$ सभी $x \geq a$ और $t \in[\alpha, \beta]$ के लिए संतत है तथा $\phi(x),[a, \xi]$ पर सभी $\xi>a$ के लिए परिबद्ध और समाकलनीय है, तब सिद्ध कीजिए :
$\int_{\alpha}^{\beta} \int_{a}^{\infty} f(x, t) \phi(x) d x d x=\int_{a}^{\infty} f(x, t) \phi(x) d t d x$
If $f(x, t)$ is continuous for all $x \geq a$ and $t \in[\alpha, \beta]$ and $\phi(x)$ is bounded and differentiable in $[a, \xi]$ for all $\xi>a$, then prove that:

$$
\int_{\alpha}^{\beta} \int_{a}^{\infty} f(x, t) \phi(x) d x d x=\int_{a}^{\infty} f(x, t) \phi(x) d t d x
$$

> Р. Т. О.

इकाई—3

(UNIT-3)

3. (अ) दर्शाइये कि $\arg \left(\frac{z_{1}-z_{2}}{z_{3}-z_{4}}\right)$ आरगाँ समतल में z_{2} को z_{1} से और z_{4} को z_{3} से मिलाने वाली रेखाओं के बीच का कोण है।

Show that $\arg \left(\frac{z_{1}-z_{2}}{z_{3}-z_{4}}\right)$ is angle between the lines joint the points z_{2} to z_{1} and z_{4} to z_{3} in argand plane.
(ब) सिद्ध कीजिए कि फलन

$$
u=x^{3}-3 x y^{2}+3 x^{2}-3 y^{2}+1
$$

लाप्लास समीकरण को संतुष्ट करता है और संगत विश्लेषिक फलन $u+i v$ ज्ञात कीजिए।

Prove that the function :

$$
u=x^{3}-3 x y^{2}+3 x^{2}-3 y^{2}+1
$$

sátisfies Laplace's equation and find corresponding analytics function $u+i v$.
(स) रूपान्तरण $\mathrm{W}=\mathrm{T}_{1}(z)=\frac{z+1}{z+3}, \quad \mathrm{~W}=\mathrm{T}_{g}(z)=\frac{z}{z+2}$ लेकर निम्नलिखित का मान बताइए :

$$
\mathrm{T}_{1}^{-1}(\mathrm{~W}), \mathrm{T}_{2}^{-1}(\mathrm{~W}), \mathrm{T}_{2} \mathrm{~T}_{1}(z), \mathrm{T}_{1} \mathrm{~T}_{2}(z), \mathrm{T}_{2}^{-1} \mathrm{~T}_{1}(z)
$$

Consider the transformation $\mathrm{W}=\mathrm{T}_{1}(z)=\frac{z+1}{z+3}$,
$\mathrm{W}=\mathrm{T}_{g}(z)=\frac{z}{z+2}$ find value of the following :
$\mathrm{T}_{1}^{-1}(\mathrm{~W}), \mathrm{T}_{2}^{-1}(\mathrm{~W}), \mathrm{T}_{2} \mathrm{~T}_{1}(z), \mathrm{T}_{1} \mathrm{~T}_{2}(z), \mathrm{T}_{2}^{-1} \mathrm{~T}_{1}(z)$
इकाई—4
(UNIT—4)
4. (अ) सिद्ध कीजिए कि किसी दूरिक समष्टि में परिमित संख्या में विवृत्त समुच्चयों का सर्वनिष्ठ विवृत्त होता है।
Prove that in a metric space, the intersection of a finite number of open sets is open,
(ब) सिद्ध कीजिए कि निम्नलिखित प्रतिचित्रण $f: \mathrm{R}^{3} \rightarrow \mathrm{R}^{3}$ $\left(\mathrm{R}^{3}, d\right)$ पर एक संकुचन प्रतिचित्रण है।

$$
f(x)=\frac{1}{4} x \forall x \in \mathrm{R}^{3}
$$

Prove that the following mapping $f: \mathrm{R}^{3} \rightarrow \mathrm{R}^{3}$, is a contraction in $\left(\mathrm{R}^{3}, d\right)$.

$$
f(x)=\frac{1}{4} x \forall x \in \mathrm{R}^{3}
$$

(स) सिद्ध कीजिए कि $\sqrt{3}$ एक अपरिमेय संख्या है।
Prove that $\sqrt{3}$ is an irrational number.

$$
\begin{gathered}
\text { इकाई—5 } \\
\text { (UNIT—5) }
\end{gathered}
$$

5. (अ) लिण्डेलॉफ प्रमेय लिखिए एवं सिद्ध कीजिए।

State and prove Lindelofs Theorem.
P. T. O.
(ब) मान लो (X, d) तथा (Y, P) दो दूरिक समष्टियाँ हैं तथा $f: \mathrm{X} \rightarrow \mathrm{Y}$ एक संतत फलन है। यदि f एकैकी आच्छादक है और X संतत है तब सिद्ध कीजिए f^{-1} संतत है।
(स) मान लो $\mathrm{X}=[-1,1]$ निरपेक्ष मान दूरिक से सज्जित है, $\mathrm{Y}=\mathrm{R}$ साधारण दूरिक समष्टि है और मान लों $f: \mathrm{X} \rightarrow \mathrm{R}, f(x)=x^{2}+7 x \forall x \in \mathrm{X}$ से परिभाषित है तब सिद्ध कीजिए कि f एक समान संतत्र है।

Let $X=[-1,1]$ is equipped with absolute value metric, $\mathrm{Y}=\mathrm{R}$ is usual metric space and Let $f: \mathrm{X} \rightarrow \mathrm{R}$ defined by $f(x)=x^{2}+7 x \forall x \in \mathrm{X}$ then prove that f is uniformly continuous.

ED-2758

