\qquad (b) Show that:

$$
P \Rightarrow(q \Rightarrow r) \equiv\left(p^{\wedge} a\right) \Rightarrow r
$$

(c) Negate the statement:
'He is poor and laborious.'

DD-2851

Unit-2

2. (a) Prove that the identity elements in a Boolean algebra are unique.
(b) Design the circuit for the following polynomial :

$$
x+y(z+s t)+u v
$$

(c) Simplify the output expression :

$$
(f+g)\left(f^{\prime}+h\right)\left(g^{\prime}+h\right)
$$

Unit-3

Time : Three Hours

Maximum Marks : 50
Note : All questions are compulsory. Attempt any two parts from each question. All questions carry equal marks.

Unit-1

1.(a) Are the following propositions?
(i) Go to Home
(ii) May you live long.,
(iii) What is your good name ?
(iv) Go to college
(v) 10 is a prime number.
3. (a) Find complete disjunctive normal form in three variables and show that its value is 1 .
(b) Simplify the following circuit.

[3] DD-2851
(c) A binomial net between three variables $\mathrm{x}, \mathrm{y}, \mathrm{z}$ is of the following type :

Unit-4

4.(a) If $A=\{1,2\}, B=\{2,3\}$ and $C=\{3,5\}$ then find
$(A \times B) \cap(A \times C)$.
(b) If R is an equivalence relation in the set A , then prove that R^{-1} is an equivalence relation in the set A .
(c) Show that the union of the countable sets as countable.

Unit-5

5. (a) Prove that the sum of the degrees of all vertices in a graph G is equal -10 twice the number of edges in G.

DD-2851
(b) Find the rank and nullity of the following graph G :

(c) Every tree with two or more vertices is 2-chromatic.

