ED-2851

BCA (Part-I) Examination, 2021

Paper - I

Discrete Mathematics
Time : Three Hours] [Maximum Marks : 80

Note : Answer any two parts from each question. All questions carry equal marks.

Unit-I

1. (a) Simplify the following

$$
\mathcal{\sim} \sim(\sim P \wedge Q) \wedge(\sim P \vee Q) \wedge(P \vee Q)
$$

and verify by truth table.
(b) Write the converse, inverse and contrapositive of the following direct statement :

If $A B C D$ is a square, then $A B C D$ is a rectangle.

DRG_41_(4)
(Turn Over)

(2)

(c) Define quantifiers, universal quantifiers and existential quantifiers by given an example.

Unit-II

2. (a) In a Boolean algebra, show that if $a+b=a+c$ and $a b=a c$ then $b=c$.
(b) A ball has 3 doors and a central lamp. At each door, a switch is provided. Design a circuit in which each of these three switches can control the lamp independently of the other.
(c) If a is any element of a Boolean algebra B, then to prove that
(i) $a \leq 1{ }^{\circ}$ and
(ii) $0 \leq a$

Unit-III

3. (a) Express the Polynomial

$$
f(x, y, z)=\left[\left(x y^{\prime}\right)^{\prime}+z^{\prime}\right] \cdot\left[z+x^{\prime}\right]^{\prime}
$$

into disjunctive normal form.
(b) Find the Boolean function of the following circuit and simplify it, if possible :
(3)

(c) Draw a binomial network for the following function

$$
a \cdot b \cdot c+a^{\prime} \cdot b \cdot c+a \cdot b^{\prime} \cdot c+a \cdot b \cdot c^{\prime}+a^{\prime} \cdot b^{\prime} \cdot c^{\prime}
$$

Unit-IV

4. (a) If the ordered pairs $(x-2,2 y+1)$ and $(y-1, x-2)$ are equal. Find the values of x and y.
(b) If N is the set of natural numbers, then what is the domain of the relation

$$
R=\{(x, y): x+y=7\}
$$

where $x, y \in N$.
(c) If two mapping f and g are defined by
$f=\{(1,2),(3,6),(4,5)\}$
$g=\{(2,3),(6,7),(5,8)\}$
the find $g \circ f$.
(4)

Unit-V

5. (a) Show that the graphs given below are not isomorphic

(b) Draw the graph represented by the following adjacency matrix

$$
\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

(c) Find the rank and nullity of the following graph G.

