DD-2862

B. C. A. (Part II) EXAMINATION, 2021

Paper First
NUMERICAL ANALYSIS
Time : Three Hours
Maximum Marks $: 50$
Note : All questions are compulsory. Attempt any two parts from each Unit. All questions carry equal marks. Simple/Scientific calculator is allowed.

Unit-I

1. (a) Compute the real root $x^{3}-5 x+3=0$ in the interval [1, 2] by Regular Falsi method.
(b) Computer the positive root of the equation $x^{4}-x-10=0$ by Newton-Raphson method.
(c) Explain solution of cubic and Biquadratic equation.

Unit-II

2. (a) Using Gauss-Jordan method, find the inverse of the matrix :

$$
\left[\begin{array}{ccc}
1 & 1 & 3 \\
1 & 3 & -3 \\
-2 & -4 & -4
\end{array}\right]
$$

(b) Find the eigen values and eigen vectors of the matrix.

$$
\mathrm{A}=\left[\begin{array}{rrr}
8 & -6 & 2 \\
-6 & 7 & -4 \\
2 & -4 & 3
\end{array}\right]
$$

(c) Using the partition method, find the inverse of :

$$
A=\left[\begin{array}{cccc}
13 & 14 & 6 & 4 \\
8 & -1 & 13 & 9 \\
6 & 7 & 3 & 2 \\
9 & 5 & 16 & 11
\end{array}\right]
$$

Unit-III

3. (a) Derive Newton's forward interpolation formula.
(b) Use Lagrange's interpolation formula to find the value of y when $x=10$, if the following values of x and y are given :

$$
x: \quad 5 \quad 6 \quad 9 \quad 11
$$

$$
y: \begin{array}{lllll}
y: & 12 & 13 & 14 & 16
\end{array}
$$

(c) Derive Newton's divided difference Interpolation formula.

Unit-IV

4. (a) Explain numerical differentiation and integration.
(b) Evaluate $\int_{0}^{1} \frac{d x}{1+x}$ taking 7 ordinates by applying Simpson's $\frac{3}{8}$ th rule. Deduce the value of $\log e^{2}$
(c) Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ using :
(i) Trapezoidal rule taking $h=\frac{1}{4}$
(ii) Weddle's rule taking $h=\frac{1}{6}$

Unit-V

5. (a) Explain numerical solution of first order ordinary differential equations.
(b) Solve the following by Euler's modified method:

$$
\begin{array}{r}
\qquad \frac{d y}{d x}=\log (x+y), y(0)=2 \\
\text { at } x=1.2 \text { and } 1.4 \text { with } h=0.2
\end{array}
$$

> Р. T. O.
(c) Apply Runge-Kutta fourth order method to find an approximate value of y when $x=0.2$ given that

$$
\begin{aligned}
& \qquad \frac{d y}{d x}=x+y \\
& \text { and } y=1 \text { when } x=0
\end{aligned}
$$

