

ED-615

M.A./M.Sc. 3rd Semester Examination, March-April 2021

MATHEMATICS

Optional - B

Paper - III

General Relativity and Cosmology

Time : Three Hours]
 [Maximum Marks : 80

Note : Answer any two parts from each question. All questions carry equal marks.

Unit-I

1. (a) Define contravariant and covariant vectors giving examples of gradient and tangent vectors in n-dimensional space and laws of transformation.
(b) State Quotient law of tensor. Let $C_{j k}^{i}$ be a 3-index physical quantity, when it is multiplied to an arbitrary vector a_{i}, the multiplication $C_{j k}^{i} a_{i}$ is a 2-index covariant tensor. Prove that $C_{j k}^{i}$ is a tensor.

(2)

(c) Prove that
(i) $a_{j i}^{i}=\frac{1}{\sqrt{-g}}\left\{\left(\sqrt{-g}, a^{i}\right)\right\}, i$
(ii) $F_{j i}^{i j}=\frac{1}{\sqrt{-g}}\left\{(\sqrt{-g}), F^{i j}\right\}, i$

Unit-II

2. (a) Define Riemann covariant tensor and prove its required expression for $R_{h i j k}$.
(b) Derive Newtonian approximation of Relativistic equations of motion of a free particle in case of weak field.
(c) State and prove the necessary and sufficient condition for flat space time.

Unit-III

3. (a) Obtain Einstein's law of gravitation of the material world which deduce some of its consequences.
(b) Show that Geodesic equations are reducible to Newtonian equation of motion in case of weak static field.
(c) Find expression for energy momentum tensor of an electromagnetic fluid.

(3)

Unit-IV

4. (a) Obtain differential equation for equation of motion of a planet in Schwarzschild's metric.
(b) Discuss advance in perihelion of a planetary orbit for mercury.
(c) Discuss gravitational red shift from the point of view of Schwarzschild's metric.

Unit-V

5. (a) Obtain Maxwell's field equations in tensor form.
(b) Obtain Schwarzschild's exterior solution of an isolated grayitational body.
(c) Obtain Reissner-Nordstrom solution for gravitational field.
