

ED-621

M.A./M.Sc. 3rd Semester Examination, March-April 2021

MATHEMATICS

Optional (B)

Paper - V

Graph Theory - I

Time: Three Hours] [Maximum Marks: 80

Note: Answer any **two** parts from each question. All questions carry equal marks.

- 1. (a) Prove that if a graph H is Homeomorphic from a graph G, then G is a contraction of H.
 - (b) Prove that if G is a k-regular graph, k is an eigenvalue of G. Then this is simple if G is connected. Every other eigenvalue has absolute value $\leq k$.

DRG_243_(3)

(Turn Over)

(2)

- (c) Define the following terms with an example:
 - (i) Direct sum
 - (i) Direct product
 - (iii) Derived graph
 - (iv) Vector space
- 2. (a) Prove that the incidence matrix F of a graph G has rank n-k, where k is the number of components.
 - (b) Prove that any square submatrix of the adjacency matrix F of a graph G has determinant +1, -1 or zero.
 - (c) Prove that the sum of any two cuts of a graph G is also a cut of G.
- 3. (a) Prove that if G is a critical graph, then $\delta(G) \ge k-1$.
 - (b) Prove that any uniquely k-colourable graph is (k-1) connected.
 - (c) Prove that for any graph G with order $n \ge 4$, $l(G) \le \lfloor n^2/4 \rfloor$.
- **4.** (a) Prove that for any graph G, $\alpha_0 + \beta_0 = n$.
 - (b) Prove that for any graph G, c(G) = p(G).
 - (c) Prove that for any graph G of order $n \ge 2$ without isolated vertices, $\pi_i \le \lfloor n^2/4 \rfloor$ and the partition need use only edge and triangles.

DRG_243_(3)

(Continued)

(3)

- **5.** (a) Prove that a graph is triangulated iff every mimimal vertex separator induces a complete subgraph.
 - (b) Prove that every comparability graph is perfect.
- (c) Prove that a graph G is a permutation graph iff G and \overline{G} are comparability graphs.

DRG_243_(3)

180