

ED-618

M.A./M.Sc. 3rd Semester Examination, March-April 2021

MATHEMATICS

Optional - A

Paper - IV

Operations Research -

Time: Three Hours] [Maximum Marks: 80

[Minimum Pass Marks: 16

Note: Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

1. (a) Use Simplex method to solve the following linear programming problem:

 $Maximize z = 6x_1 + 8x_2$

Subject to: $5x_1 + 10x_2 \le 60$

 $4x_1 + 4x_2 \le 40$

 $x_1, x_2 \ge 0$

DRG_193_(7)

(Turn Over)

(2)

(b) Solve the following linear programming problem using the result of its dual:

Minimize
$$z = 24x_1 + 30x_2$$

Subject to: $2x_1 + 3x_2 \ge 10$
 $4x_1 + 9x_2 \ge 15$
 $6x_1 + 6x_2 \ge 20$
 $x_1, x_2 \ge 0$

(c) Consider the following linear programming problem:

Maxmize
$$z = 10x_1 + 15x_2 + 20x_3$$

Subject to: $2x_1 + 4x_2 + 6x_3 \le 24$
 $3x_1 + 9x_2 + 6x_3 \le 30$
 $x_1, x_2, x_3 \ge 0$

and check whether the optimality is affected, if the profit coefficients are changed from (10, 15, 20) to (7, 14, 15). If so, find the revised optimum solution.

Unit-II

2. (a) Solve the following linear programming problem using big-M method:

DRG_193_(7)

(Continued)

(3)

$$Minimize z = 2x_1 + 3x_2$$

Subject to:
$$x_1 + x_2 \ge 6$$

$$7x_1 + x_2 \ge 14$$

$$x_1, x_2 \ge 0$$

(b) Solve the following linear programming problem using dual simplex method:

 $Minimize z = 2x_1 + 4x_2$

Subject to:
$$2x_1 + x_2 \ge 4$$

$$x_1 + 2x_2 \ge 3$$

$$2x_1 + 2x_2 \le 12$$

$$x_1, x_2 \ge 0$$

(c) Find the Dual of the Primal:

Maximize $z = x_1 + 5x_2 + 3x_2$

Subject to:
$$x_1 + 2x_2 + x_3 = 3$$

$$2x_1 - x_2 = 4$$

$$x_1, x_2, x_3 \ge 0$$

DRG_193_(7)

(Turn Over)

(4)

Unit-III

(a) Consider the following parametric linear programming problem:

Maximize $z = (10 - 2t) x_1 + (5 - 3t) x_2$

Subject to: $8x_1 + 2x_2 \le 48$

 $2x_1 + 4x_2 \le 24$ $x_1, x_2 \ge 0$

and t is a non-negative parameter. Perform parametric analysis with respect to the objective function coefficients and identify the ranges of t over which the optimality is unaffected.

- (b) Write a short note on interior point algorithm.
- (c) Carry out two iterations of Karmarkar's algorithm for the following problem:

 $Minimize z = x_1 - 2x_2$

Subject to: $x_1 - 2x_2 + x_3 = 0$

 $x_1 + x_2 + x_3 = 1$

 $x_1, x_2, x_3 \ge 0$

DRG_193_(7)

(Continued)

(5)

Unit-IV

- **4.** (a) Discuss the similarities and dissimilarities between Transportation and Assignment problem.
 - (b) Use Vogel's approximation method to solve the following transportation problem:

			Desti	nation		Supply		
		1	2	3	4			
	1	3	1	7	4	300		
Source	2	2	6	5	9	400		
	3	8	3) 3	2	500		
Demand		250	350	400	200	-		

(c) Write steps of Hungerian method for solving Assignment problem.

Unit-V

- 5. (a) Write steps of PRIM algorithm for finding the Minimum Spanning Tree problem.
 - (b) A project is composed of 7 activities whose time estimates are listed in the

DRG_193_(7)

(Turn Over)

(6)

table below. Activities are identified by their beginning (i) and ending (j) node numbers:

Activity	Estimate Duration in Weeks					
(i-j)	Optimistic	Most likely	Pessimistic			
	(t_o)	(t_m)	(t_p)			
1-2	1	1	07			
1-3	1	4	7			
1-4	2	C2	8			
2-5	1.1	1	1			
3-5	2	5	14			
4-6	2	5	8			
5-6	3	6	15			

- (i) Draw the project network.
- (ii) Find the expected duration and variance for each activity. What is the expected project length?

DRG_193_(7)

(Continued)

(7)

(c) Consider the following data of the project:

Activity	Predecessor (s)	Duration (weeks)		
		t_o	t_m	t_p
\overline{A}	_	3	5	8
В	_	6	7	9
C	_	4	5	9
D	A	3.	5	8
E	В	4	6	9
F	A	5	8	11
G	C,D	3	6	9
H	C, D C, D, E	1	2	9

- (i) Construct the project network.
- (ii) Find critical path and expected completion time.

DRG_193_(7)