Roll No.

DD-762

M. A./M. Sc. (Fourth Semester) WS.ID **EXAMINATION, 2020**

MATHEMATICS

Paper First

(Functional Analysis

Time : Three Hours Maximum Marks : 80

- Note: Attempt any two parts from each question. All questions carry equal marks.
- State and prove uniform boundedness theorem. 1. (a)
 - (b) State and prove open mapping theorem.
 - (c) Let T be a closed linear map of a Banach space X into a Banach space Y. Then T is continuous.
- 2. (a) State and prove Hahn-Banach threorem for real linear space.
 - A closed subspace of a reflexive Banach space is (b) reflexive.
 - (c) State and prove closed range theorem.
- 3. (a) Every inner product space is a normed space but converse need not be true.

- Give the definition of orthonormal set and let (b) $S = \{x_1, x_2 \dots\}$ be linearly independent sequence in an inner product space. Then there exists an orthonormal sequence $T = \{y, y_2, \dots\}$ such that L(S) = L(T).
- Let $\{e_i\}$ be a non-empty arbitrary orthonormal set in (c) a Hilbert space H. Then the following conditions are equivalent :
 - (i) $\{e_i\}$ is complete
 - (ii) $x \perp \{e_i\} \Longrightarrow x = 0$

(iii)
$$x \in \mathbf{H} \Longrightarrow x = \Sigma(x, e_i) e_i$$

(i)
$$\{e_i\}$$
 is complete
(ii) $x \perp \{e_i\} \Rightarrow x = 0$
(iii) $x \in H \Rightarrow x = \Sigma(x, e_i) e_i$
(iv) $x \in H \Rightarrow ||x||^2 = \sum_i |(x, e_i)|^2$

- (a) A closed convex subset C of a Hilbert space H 4. contains a unique vector of smallest n or m.
 - Let M be a proper closed linear subspace of a (b) Hilbert space H. Then there exists a non-zero vector z_0 in H s. t. $z_0 \perp M$.
 - State and prove projection theorem. (c)
- (a) Let T be an operator on H. Define the adjoint T^* of 5. T. The mapping $T \rightarrow T^*$ of B (H) into itself has the following properties : For T, T_1 , $T_2 \in \beta(H)$ and $\alpha \in C$:
 - $I^* = I$, where I is the identify operator (i)

(ii)
$$(T_1 + T_2)^* = T_1^* + T_2^*$$

- (iii) $(\alpha T)^* = \alpha T^*$
- (iv) $(T_1T_2)^* = T_2^*T_1^*$

- (b) If T₁ and T₂ are normal operators on a Hilbert space H with the property that either commutes with the adjoint of the other then $T_1 + T_2$ and T_1T_2 are normal.
- Let T be a bounded linear operator on a Hilbert (c) space H. Then :
 - T is normal $\Leftrightarrow ||T^*x|| = ||Tx|| \quad \forall x \in H$ (i)

https://thinkorsitypewsith