DD-771

M. A./M. Sc. (Fourth Semester) EXAMINATION, 2020

MATHEMATICS

(Optional-B)
Paper Fifth
(Graph Theory)
Time . Three Hours
Maximum Marks : 80
Note : Attempt any two parts from each question. All questions carry equal marks.

Unit-I

1. (a) For any $s, t \geq 1$, prove that there is $\mathrm{R}(s, t)<\infty$ such that any graph on $\mathrm{R}(s, t)$ vertices contains either an independent set of size s or a clique of size t. In particular :

$$
\mathrm{R}(s, t) \leq\binom{ s+t-2}{s-1}
$$

(b) Prove that every graph on $\left[\begin{array}{c}k+l \\ k\end{array}\right]$ vertices contains either a complete sub-group on $k+1$ vertices or an independent set of $l+1$ vertices.
(c) Prove that for any $s \geq 2$,

$$
\mathrm{R}(s, \mathrm{~s}) \geq 2^{\frac{s}{2}}
$$

Unit-II
2. (a) Prove that every vertex of a composite connected graph lies on a 4-cycle.
(b) Prove that the line-group and the point group of a graph G are isomorphic iff G has at most one isolated point and k_{2} is not a component of G .
(c) Prove that the group of the union of two graphs is the sum of their groups:

$$
\Gamma\left(\mathrm{G} \cup \mathrm{G}_{2}\right) \equiv \Gamma\left(\mathrm{G}_{1}\right)+\Gamma\left(\mathrm{G}_{2}\right)
$$

iff no component of G, is isomorphic with a component of G_{2}.

Unit-III

3. (a) Prove that every 3-chromatic maximal planar graph is uniquely 3 -colorable.
(b) If $\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots \ldots, \mathrm{~B}_{r}$ are the blocks of a graph G , then prove that :

$$
\phi(\mathrm{G}, x)=\frac{1}{x^{r-1}} \prod_{i=1}^{\infty} \mathrm{Q}\left(\mathrm{~B}_{i}, x\right) .
$$

(c) Prove that the coefficients of every chromatic polynomial alternate in sign.

Unit-IV

4. (a) Prove that each cycle $\mathrm{C}_{n}, n \geq 3$ is chromatically unique.
(b) Prove that for any graph G:

$$
\chi(\mathrm{G}) \leq 1+\max \delta\left(\mathrm{G}^{\prime}\right),
$$

where the maximum is taken over all induced subgroups G^{\prime} of G .
(c) Prove that for a connected graph G,

$$
\mathrm{T}(\mathrm{G}, 1,1)=\tau(\mathrm{G}),
$$

the number of spanning trees of G.

Unit-V

5. (a) Prove that a graph G is n-line connected iff every pair of points are joined by at least n-line disjoint paths.
(b) State and prove Menger's theorem for digraph (vertex form).
(c) Prove that every acyclic graph without isolated has a unique basis consisting of its transmitters.
