Roll No.

DD-771

M. A./M. Sc. (Fourth Semester) WS.H **EXAMINATION, 2020**

MATHEMATICS

(Optional—B)

Paper Fifth

(Graph Theory)

Time : Three Hours

Maximum Marks : 80

Note: Attempt any two parts from each question. All questions carry equal marks.

Unit—I

1. (a) For any $s,t \ge 1$, prove that there is $R(s,t) < \infty$ such that any graph on R(s,t) vertices contains either an independent set of size s or a clique of size t. In particular:

$$\mathbf{R}(s,t) \leq \binom{s+t-2}{s-1}.$$

P. T. O.

https://universitynews.in/

https://universitynews.in/

- (b) Prove that every graph on $\begin{bmatrix} k+l\\k \end{bmatrix}$ vertices contains either a complete sub-group on k+1 vertices or an independent set of l+1 vertices.
- (c) Prove that for any $s \ge 2$,

$$\mathbf{R}(s,s) \ge 2^{\frac{s}{2}}.$$

Unit—II

- 2. (a) Prove that every vertex of a composite connected graph lies on a 4-cycle.
 - (b) Prove that the line-group and the point group of a graph G are isomorphic iff G has at most one isolated point and k_2 is not a component of G.
 - (c) Prove that the group of the union of two graphs is the sum of their groups :

 $\Gamma(\mathbf{G} \cup \mathbf{G}_2) \equiv \Gamma(\mathbf{G}_1) + \Gamma(\mathbf{G}_2)$

iff no component of G, is isomorphic with a component of G_2 .

Unit—III

- 3. (a) Prove that every 3-chromatic maximal planar graph is uniquely 3-colorable.
 - (b) If B₁, B₂,...., B_r are the blocks of a graph G, then prove that :

$$\phi(\mathbf{G}, x) = \frac{1}{x^{r-1}} \prod_{i=1}^{\infty} Q(\mathbf{B}_i, x).$$

(c) Prove that the coefficients of every chromatic polynomial alternate in sign.

https://universitynews.in/

https://universitynews.in/

Unit-IV

- 4. (a) Prove that each cycle $C_n, n \ge 3$ is chromatically unique.
 - (b) Prove that for any graph G :

 $\gamma(G) \leq 1 + \max \delta(G')$,

where the maximum is taken over all induced subgroups G' of G.

Prove that for a connected graph G, (c)

 $(-, 1, 1) = \tau$ (G), the number of spanning trees of G.

- Prove that a graph G is *n*-line connected iff every 5. (a) pair of points are joined by at least n-line disjoint paths.
 - State and prove Menger's theorem for digraph (b) (vertex form).
 - (c) Prove that every acyclic graph without isolated has a unique basis consisting of its transmitters.

DD-771