DD-768

M. A./M.Sc. (Fourth Semester) EXAMINATION, 2020
 MATHEMATICS
 (Optional-A)

Paper Fourth
(Operations Research)
Time : Three Hours
Maximum Marks : 80
Note : Attempt any two parts from each question. All questions carry equal marks.

Unit-I

1. (a) Use Dynamic Programming to solve the following problem :
Minimize :

$$
u_{1}^{2}+u_{2}^{2}+u_{3}^{2}
$$

subject to :

$$
u_{1}+u_{2}+u_{3}=10
$$

and

$$
u_{1}, u_{2}, u_{3} \geq 0
$$

(b) Write the applications of Dynamic Programming.
(c) Solve the following LPP by using dynamic programming :
Maximize :

$$
z=3 x_{1}+4 x_{2}
$$

subject to :

$$
\begin{aligned}
& 2 x_{1}+x_{2} \leq 40 \\
& 2 x_{1}+5 x_{2} \leq 180 \\
& x_{1}, x_{2} \geq 0 . \\
& \text { Unit-II }
\end{aligned}
$$

2. (a) Calculate the value of game and probability of playing each strategy in the following game theory matrix :

B \begin{tabular}{c}
\multicolumn{2}{c}{A}

\cline { 2 - 4 } | 30 | 40 | 60 |
| :---: | :---: | :---: |
| 35 | 42 | 11 |

\end{tabular}

(b) Solve the following 2×4 game by graphical method: Player B

		1	2	3	4
Player A	1	3	3	4	0
	2	5	4	4	7

(c) Solve the following 3×3 game by linear programming method :

Player B

		B_{1}	B_{2}	B_{3}
	A_{1}	1	-1	3
Player A	A_{2}	3	5	-3
	A_{3}	6	2	-2

Unit-III

3. (a) Solve the following integer programming problem using branch and bound method :
Min. :

$$
z=3 x_{1}+2.5 x_{2}
$$

subject to :

$$
\begin{aligned}
x_{1}+2 x_{2} & \geq 20 \\
3 x_{1}+2 x_{2} & \geq 50
\end{aligned}
$$

and $x_{1}, x_{2} \geq 0$ and integer.
(b) Write the limitations of integer programming.
(c) Solve the mixed integer programming problem : minimize :

$$
z=2 x_{1}+2 x_{2}+4 x_{3}
$$

subject to :

$$
\begin{aligned}
2 x_{1}+3 x_{2}+5 x_{3} & \geq 2 \\
3 x_{1}+x_{2}+7 x_{3} & \leq 3 \\
x_{1}+4 x_{2}+6 x_{3} & \leq 5 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

and

Unit-IV

4. (a) Write a short note on economic interpretation of dual linear programming.
(b) Explain about input-output analysis.
(c) Write a short note on indecomposable and decomposable economics.

Unit-V

5. (a) Determine x_{1} and x_{2} so as to:

Maximize :

$$
z=12 x_{1}+21 x_{2}+2 x_{1} x_{2}-2 x_{1}^{2}-2 x_{2}^{2}
$$

by using Kuhn-Tucker condition, subject to :

$$
\begin{aligned}
x_{2} & \leq 8 \\
x_{1}+x_{2} & \leq 10 \\
x_{1}, x_{2} & \geq 0 .
\end{aligned}
$$

and
(b) Solve the following quadratic programming problem using Wolf's method :
Maximize :

$$
z=6 x_{1}+3 x_{2}-2 x_{1}^{2}-3 x_{2}^{2}-4 x_{1} x_{2}
$$

Subject to :
and

$$
\begin{aligned}
x_{1}+x_{2} & \leq 1 \\
2 x_{1}+3 x_{2} & \leq 4 \\
x_{1}, x_{2} & \geq 0 .
\end{aligned}
$$

(c) Solve the following non-linear programming problem using separable programming :
Maximize :

$$
z=2 x_{1}^{3}+\frac{5}{2} x_{2}
$$

Subject to :

$$
\begin{aligned}
2 x_{1}^{2}+3 x_{2} & \leq 16 \\
x_{1}, x_{2} & \geq 0 .
\end{aligned}
$$

and

