ED-2811

M.A./M.Sc. (Final) Examination, 2021。

MATHEMATICS

Optional

Paper - IV (ii)

Wavelets

Time : Three Hours]
[Maximum Marks : 100
Note : Answer any two parts from each question. All questions carry equal marks.

Unit-I

1. (a) State and prove Balian-low theorem for $g \in L^{2}(\mathbb{R})$.
(b) Let $\left\{V_{j}: j \in \mathbb{Z}\right\}$ be a sequence of closed subspaces of $L^{2}(\mathbb{R})$ satisfying
(i) $V_{j} \subseteq V_{j+1} \quad \forall j \in \mathbb{Z}$
(2)
(ii) $f(x) \in V_{j}$ if and only if $f(2 x) \in V_{j+1}$ $\forall j \in \mathbb{Z}$
(iii) There exists a function $\phi \in V_{0}$, such that $\{\phi(x-k) \mid k \in \mathbb{Z}\}$
is an orthonormal basis for V_{0} and ${ }^{\circ}$ $|\hat{\phi}|$ is continuous at 0 . Then prove that the following two conditions are equivalent :
(i) $\hat{\phi}(0)=0$,
(ii) $\overline{\bigcup_{j \in \mathbb{Z}} V_{j}}=L^{2}(\mathbb{R})$
(c) Let r be a non-negative integer. Let ψ be a function in $C^{r}(\mathbb{R})$ such that
$|\psi(x)| \leq \frac{C}{(1+|x|)^{r+1+\epsilon}}$ for some $\in>0$,
and that $\psi^{(m)} \in L^{\infty}(\mathbb{R})$ for $m=1,2, \ldots r$.
If $\left\{\Psi_{j, k} \mid j, k \in \mathbb{Z}\right\} \quad$ is an orthonormal system in $L^{2}(\mathbb{R})$, then all moments of ψ upto order r are zero; i.e.
$\int_{\mathbb{R}} x^{m} \psi(x) d x=0 \forall m=0,1,2 \ldots r$.
(3)

Unit-II

2. (a) Suppose $f \in L^{2}(\mathbb{R})$, then prove that f is orthogonal to W_{j} if and only if $\sum_{k \in \mathbb{Z}} \hat{f}\left(\xi+2^{j+1} k \pi\right) \overline{\hat{\psi}\left(2^{-j} \xi+2 k \pi\right)}=0 \quad$ for a.e. $\xi \in \mathbb{R}$.
(b) Suppose $\psi \in L^{2}(\mathbb{R})$ and $b=\langle\hat{\psi}|$ has support contained in $\left[\frac{-8}{3} \pi, \frac{-2}{3} \pi\right] \cup\left[\frac{2}{3} \pi, \frac{8^{\circ}}{3} \pi\right]$, Then prove that ψ is an orthonormal wavelet if and only if
(i) $b^{2}(\xi)+b^{2}\left(\frac{\xi}{2}\right)=1$ for $\xi \in\left[\frac{4}{3} \pi, \frac{8}{3} \pi\right]$
(ii) $b^{2}(\xi)+b^{2}(\xi+2 \pi)=1 \quad$ for

$$
\xi \in\left[\frac{-4}{3} \pi, \frac{-2}{3} \pi\right]
$$

(iii) $b(\xi)=b\left(\frac{\xi}{2}+2 \pi\right)$ for $\xi \in\left[\frac{-8}{3} \pi, \frac{-4}{3} \pi\right]$
(4)
(c) Suppose $N=1,2,3, \ldots$, then prove that

$$
\sum_{k \in \mathbb{Z}} \frac{1}{(\xi+2 k \pi)^{N+1}}=\left(2 \sin \left(\frac{1}{2} \xi\right)\right)^{-N-1} P_{N}\left(\frac{\xi}{2}\right),
$$ where P_{N} is a trigonometric polynomial satisfying :

(i) P_{N} is an even function, and

$$
P_{N}(k \pi)=(-1)^{k(N-1)} \forall k \in \mathbb{Z}
$$

(ii) when N is odd, P_{N} is π-periodic and $P_{N}(\xi)>0$ for all $\xi \in \mathbb{R}$.
(iii) when N is even,

$$
P_{N}(\xi+\pi)=-P_{N}(\xi) \text { for all } \xi \in \mathbb{R} .
$$

Unit-III

3. (a) Let H be a Hilbert space and $\left\{e_{j}: j=1,2, \ldots.\right\}$ be a family of elements of H, then prove that
(i) $\|f\|^{2}=\sum_{j=1}^{\infty}\left|<f, e_{j}>\right|^{2}$ holds for all $f \in H$ if and only if

(5)

(ii) $f=\sum_{j=1}^{\infty}<f, e_{j}>e_{j}$ with convergence in H, for all $f \in H$.
(b) Prove that

$$
\begin{array}{r}
\sum_{j \in D} 2^{-j} \int_{\mathbb{R}}\left|\hat{f}\left(2^{-j} \xi\right) \hat{\psi}(\xi)\right| \sum_{k \neq 0} \mid \hat{f}\left(2^{-j}(\xi+2 k \pi)\right) \\
\hat{\psi}(\xi+2 k \pi) \mid d \xi-\infty
\end{array}
$$

(c) If ψ is an orthonormal wavelet, then prove that

$$
\begin{equation*}
\hat{\psi}\left(2^{n} \xi\right)=\sum_{j=1}^{\infty} \sum_{k \in \mathbb{Z}} \hat{\psi}\left(2^{n}(\xi+2 k \pi)\right) \overline{\hat{\Psi}}\left(2^{j}(\xi+2 k \pi)\right) \tag{j}
\end{equation*}
$$

for all $n \geq 1$.

Unit-IV

4. (a) Suppose that $g \in L^{2}(\mathbb{R})$ and that $\left\{g_{m, n}(x)=e^{2 \pi i m x} g(x-n) \mid m, n \in \mathbb{Z}\right\}$ is a frame for $L^{2}(\mathbb{R})$. Let $\hat{g} \equiv S^{-1} \dot{g}$, where $S=F^{*} F$ and F is a frame operator. Then prove that

$$
\begin{aligned}
& \quad \widetilde{g_{m, n}}(x)=e^{2 \pi i m x} \tilde{g}(x-n)=\tilde{g}_{m, n(x)} \\
& \text { for } m, n \in \mathbb{Z} \text {. }
\end{aligned}
$$

(6)
(b) Let $\psi \in L^{2}(\mathbb{R})$ be such that

$$
\begin{aligned}
& A_{\psi}=\underline{S}_{\psi}-\sum_{q \in 2 \mathbb{Z}+1}\left[\beta_{\psi}(q) \beta_{\psi}(-q)\right]^{\frac{1}{2}}>0 \text { and } \\
& B_{\psi}=\bar{S}_{\psi}+\sum_{q \in 2 \mathbb{Z}+1}\left[\beta_{\psi}(q) \beta_{\psi}(-q)\right]^{\frac{1}{2}}<\infty
\end{aligned}
$$

Then prove that $\left\{\psi_{j, k} \mid j, k \in \mathbb{Z}\right\}$ is a frame with frame bounds A_{ψ} and B_{ψ}
(c) Suppose that $g \in D^{2}(\mathbb{R})$ and that $\left\{g_{m, n}(x)=e^{2 \pi i m x} g(x-n) \mid m, n \in \mathbb{Z}\right\}$ is a frame with frame bounds A and B. Then prove that $0<A \leq|\operatorname{Rg}(s, t)|^{2} \leq B<\infty$ and $\left(R \tilde{g}_{m, n}\right)(s, t)=\frac{e^{2 \pi i m s} e^{2 \pi i n t}}{R g(s, t)}$.

Unit-V

5. (a) If $N=2^{q}$ then prove that $C_{N}=E_{1}, E_{2} \ldots E_{q}$, where each E_{j} is an $N \times N$ matrix such that each row has precisely two non-zero entries.

(7)

(b) Prove that the sequence $\left\{u_{j, k} \mid j \in \mathbb{Z}, 0 \leq k \leq l_{j}-1\right\} \quad$ given by $u_{j, k}(x)=\sqrt{\frac{2}{l_{j}}} w_{j}(x) \cos \left(\pi\left(k+\frac{1}{2}\right)\left(\frac{x-a_{j}}{l_{j}}\right)\right) x \in \mathbb{Z}$ is an orthonormal basis for $l^{2}(\mathbb{Z})$.
(c) What do you mean by decomposition of wavelets? Write in detail "how Haar wavelet works for doing the decomposition algorithm".

