

ED-2811

M.A./M.Sc. (Final) Examination, 2021

MATHEMATICS

Optional

Paper - IV (ii)

Wavelets

Time : Three Hours] [Maximum Marks : 100

Note : Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

1. (a) State and prove Balian-low theorem for $g \in L^2(\mathbb{R})$.

- (b) Let $\{V_j : j \in \mathbb{Z}\}$ be a sequence of closed subspaces of $L^2(\mathbb{R})$ satisfying
 - (i) $V_j \subseteq V_{j+1} \quad \forall \ j \in \mathbb{Z}$

DRG_39(7)

(Turn Over)

e.NS

(2)

- (*ii*) $f(x) \in V_j$ if and only if $f(2x) \in V_{j+1}$ $\forall j \in \mathbb{Z}$
- (*iii*) There exists a function $\phi \in V_0$, such

that
$$\{\phi(x-k) | k \in \mathbb{Z}\}$$

is an orthonormal basis for V_0 and $|\hat{\phi}|$ is continuous at 0. Then prove that the following two conditions are equivalent :

(i) $\hat{\phi}(0) = 0$,

(*ii*)
$$\overline{\bigcup_{j\in\mathbb{Z}}V_j} = L^2(\mathbb{R})$$

(c) Let r be a non-negative integer. Let ψ be a function in $C^r(\mathbb{R})$ such that

 $|\psi(x)| \leq \frac{C}{(1+|x|)^{r+1+\epsilon}} \text{ for some } \epsilon > 0,$ and that $\psi^{(m)} \in L^{\infty}(\mathbb{R})$ for m = 1, 2, ..., r. If $\{\psi_{j,k} \mid j, k \in \mathbb{Z}\}$ is an orthonormal system in $L^2(\mathbb{R})$, then all moments of ψ upto order r are zero; i.e.

$$\int_{\mathbb{R}} x^m \psi(x) dx = 0 \ \forall \ m = 0, 1, 2 \dots r.$$

DRG_39(7)

(Continued)

(3)

Unit-II

2. (a) Suppose
$$f \in L^{2}(\mathbb{R})$$
, then prove that f is
orthogonal to W_{j} if and only if
 $\sum_{k \in \mathbb{Z}} \hat{f}(\xi + 2^{j+1}k\pi) \hat{\psi}(2^{-j}\xi + 2k\pi) = 0$ for
a.e. $\xi \in \mathbb{R}$.
(b) Suppose $\psi \in L^{2}(\mathbb{R})$ and $b = |\hat{\psi}|$ has
support contained in
 $\left[\frac{-8}{3}\pi, \frac{-2}{3}\pi\right] \bigcup \left[\frac{2}{3}\pi, \frac{8}{3}\pi\right]$, Then prove
that ψ is an orthonormal wavelet if and
only if
(i) $b^{2}(\xi) + b^{2}\left(\frac{\xi}{2}\right) = 1$ for $\xi \in \left[\frac{4}{3}\pi, \frac{8}{3}\pi\right]$
(ii) $b^{2}(\xi) + b^{2}(\xi + 2\pi) = 1$ for
 $\xi \in \left[\frac{-4}{3}\pi, \frac{-2}{3}\pi\right]$
(iii) $b(\xi) = b\left(\frac{\xi}{2} + 2\pi\right)$ for $\xi \in \left[\frac{-8}{3}\pi, \frac{-4}{3}\pi\right]$

DRG_39_(7)

(Turn Over)

https://universitynews.in/

(4)

(c) Suppose N = 1, 2, 3, ..., then prove that

$$\sum_{k \in \mathbb{Z}} \frac{1}{(\xi + 2k\pi)^{N+1}} = \left(2\sin\left(\frac{1}{2}\xi\right)\right)^{-N-1} P_N\left(\frac{\xi}{2}\right),$$
where P_N is a trigonometric polynomial
satisfying :
(i) P_N is an even function, and
 $P_N(k\pi) = (-1)^{k(N-1)} \forall k \in \mathbb{Z}$.
(ii) when N is odd, P_N is π -periodic and
 $P_N(\xi) > 0$ for all $\xi \in \mathbb{R}$.
(iii) when N is even,
 $P_N(\xi + \pi) = -P_N(\xi)$ for all $\xi \in \mathbb{R}$.
Unit-III
3. (a) Let H be a Hilbert space and
 $\{e_j : j = 1, 2, ...\}$ be a family of elements
of H, then prove that
(i) $||f||^2 = \sum_{j=1}^{\infty} |\langle f, e_j \rangle|^2$ holds for all
 $f \in H$ if and only if

DRG_39_(7)

(Continued)

(5)
(ii)
$$f = \sum_{j=1}^{\infty} \langle f, e_j \rangle e_j$$
 with convergence
in H , for all $f \in H$.
(b) Prove that
 $\sum_{j \in D} 2^{-j} \int_{\mathbb{R}} |\hat{f}(2^{-j}\xi)\hat{\psi}(\xi)| \sum_{k\neq 0} |\hat{f}(2^{-j}(\xi+2k\pi))| \hat{\psi}(\xi+2k\pi)| d\xi < \infty$
(c) If ψ is an orthonormal wavelet, then
prove that
 $\hat{\psi}(2^n\xi) = \sum_{j=1}^{\infty} \sum_{k \in \mathbb{Z}} \hat{\psi}(2^n(\xi+2k\pi)) \hat{\psi}(2^j(\xi+2k\pi))$
 $\hat{\psi}(2^j(\xi))$
for all $n \ge 1$.
Unit-IV
4. (a) Suppose that $g \in L^2(\mathbb{R})$ and that
 $\{g_{m,n}(x) = e^{2\pi i m x} g(x-n) | m, n \in \mathbb{Z}\}$ is a
frame for $L^2(\mathbb{R})$. Let $\hat{g} = S^{-1} \dot{g}$, where
 $S = F * F$ and F is a frame operator.
Then prove that
 $\widehat{g}_{m,n}(x) = e^{2\pi i m x} \widetilde{g}(x-n) = \widetilde{g}_{m,n(x)}$
for $m, n \in \mathbb{Z}$.

DRG_39_(7)

(Turn Over)

https://universitynews.in/

(6)

(b) Let $\psi \in L^2(\mathbb{R})$ be such that $A_{\Psi} = \underline{S}_{\Psi} - \sum_{q \in 2\mathbb{Z}+1} \left[\beta_{\Psi}(q) \beta_{\Psi}(-q) \right]^{\frac{1}{2}} > 0 \text{ and}$ $B_{\Psi} = \overline{S}_{\Psi} + \sum_{q \in 2\mathbb{Z}+1} \left[\beta_{\Psi}(q) \beta_{\Psi}(-q) \right]^{\frac{1}{2}} < \infty$ Then prove that $\{ \Psi_{j,k} \mid j,k \in \mathbb{Z} \}$ is a frame with frame bounds A_{ψ} and B_{ψ} . that $g \in L^2(\mathbb{R})$ and (c) Suppose that $\left\{g_{m,n}(x) = e^{2\pi i m x} g(x-n) \mid m, n \in \mathbb{Z}\right\}$ is a frame with frame bounds A and B. Then prove that $0 < A \le |Rg(s,t)|^2 \le B < \infty$ and $\left(R\tilde{g}_{m,n}\right)(s,t) = \frac{e^{2\pi i m s} e^{2\pi i n t}}{Rg(s,t)}.$ Unit-V

5. (a) If $N = 2^q$ then prove that $C_N = E_1, E_2 \dots E_q$, where each E_j is an $N \times N$ matrix such that each row has precisely two non-zero entries.

DRG_39(7)

(Continued)

(7)

<i>(b)</i>	Prove	that	the	sequen	ce
	$\left\{u_{j,k} \mid j \in \mathbb{Z}\right\}$	$0 \le k \le l_j$	-1} g	iven	by
	$u_{j,k}\left(x\right) = \sqrt{\frac{2}{l_j}}$	$w_j(x)\cos\left(\pi\right)$	$\left(k+\frac{1}{2}\right)\left(\frac{x}{2}\right)$	$\left(\frac{-a_j}{l_j}\right) x \in$	Z
	is an ortho	normal bas	sis for l^2	$^{2}(\mathbb{Z}).$	
(c)	What do yo wavelets? wavelet decompositi	Write in works	detail "l for do	how Ha	
	5.110	in set	2		
V					

DRG_39_(7)

100