		ED-280	05 [2]
No. of Printed Pages : 4	Roll No	(c)	Define Monoid and show that for any commulative
			monoid (M, *), the set of idempotent elements of M
			forms a sub-monoid.
			Unit–2
ED-2805		2. (a)	Define Distributive lattice and show that the direct
			product of any two distributive lattice is a distributive
			lattice.
M.A./M.Sc. (Previous)		(b)	Discuss Karnaugh map with one, two, three and four
EXAMINATION, 2021			variables.
MATHEMATICS		(c)	Write the following Boolean expressions in an
Paper Fifth			equivalent sum of products canonical form in three
(Advance Discrete Mathematics)			variables x_1, x_2 and x_3 :
Time : Three hours	Maximum Marks : 100		(i) $x_1 * x_2$
Note : Attempt any two parts	s from each question. All		(ii) $x_1 = x_2$
questions carry equal marks.			(iii) $(x_1 x_2) * x_3$
Unit–1			Unit–3
1. (a) State and prove Basic Ho	omomorphism Theorem.	3. (a)	Define circuit matrix and find the circuit matrix in
(b) Define the following :			given graph : V_3 a c
(i) Tautology,			b d
(ii) Semigroup,			V_2 V_4
(iii) Congruence Relation,			h g e
(iv) Submonoid,			
(v) Direct Product.			$V_1 \xrightarrow{f} V_5$

[P.T.O.]

https://universitynews.in/

(b) Discuss about Warshall's Algorithm.

(c) Define graph and show that a simple graph (i.e. a graph without parallel edges or self loops) with *n* vertices and *k* components can have at most $\frac{(n \ k)(n \ k \ 1)}{2}$ edges.

Unit–4

4. (a) Define transition system and consider the transition system in the following fig. Determine the initial states, final states and the acceptability of 101011, 111010.

(b) Define non-deterministic finite automata and a deterministic acceptor equivalent $M = (\{q_0, q_1, q_2\}, \{a, b\}, q_0, \{q_2\})$ is given following table :

State Table

State/	a	b
$egin{array}{c} q_0 \ q_1 \ q_2 \end{array}$	$q_{0,}q_{1}$ q_{0}	$\begin{array}{c} q_2 \\ q_1 \\ q_0, q_1 \end{array}$

