ED-2804

M.A./M.Sc. (Previous) Examination, 2021

MATHEMATICS
Paper - IV
Complex Analysis

Time : Three Hours] [Maximum Marks : 100
Note : Answer any two parts from each question. All questions cârry equal marks.

Unit-I

1. (a) State and prove Laurent's theorem.
(b) Prove that equation $2 z^{5}+8 z-1=0$ has one real root in $|z|<1$ and four roots lie between the circles $|z|=1$, and $|z|=2$.
(c) Let $f(z)$ be analytic in a neighbourhood of z_{0} and $f^{\prime}\left(z_{0}\right) \neq 0$, then the relation $w=f(z)$ defines z as analytic function $f^{-1}(w)$ in some neighbourhood of the point $w_{0}=f\left(z_{0}\right)$.

(2)

Unit-II

2. (a) If $0<a<1$, then use the method of contour integration to evaluate

$$
\int_{0}^{\infty} \frac{x^{a-1}}{1-x} d x
$$

(b) Find the image of the circle $|z-2|=2$ under the Mobius transformation

$$
w=\frac{z}{z+1} .
$$

(c) State and prove Hurwitz's theorem.

Unit-III

3. (a) For Re $z>1$, prove that
$\zeta(z) \cdot \Gamma z=\int_{0}^{\infty}\left(e^{t}-1\right)^{-1} t^{z-1} d t$
(b) Let of (z) be an analytic function in a domain D containing a segment of the x-axis and is symmetric to the x-axis. The show that

$$
\overline{f(z)}=-f(\bar{z}), z \in D
$$

if and only if $f(x)$ is purely imaginary for each point on the segment of x-axis.

(3)

(c) Let $D=\{z:|z|<1\}$ be the unit disk and suppose that $f: \partial D \rightarrow \mathbb{R}$ is a continous function, then there $i D$ a continuous function $\quad u: \bar{D} \rightarrow \mathbb{R}$ such that $u(z)$ is harmonic in D.

Unit-IV

4. (a) State and prove Poisson-Jensen formula.
(b) What do you mean by exponents of convergence? If f is an entire function of finite order λ then f has finite genus $\mu \leq \lambda$.
(c) The order of a canonical product is equal to the exponent of convergence of its zeros.

Unit-V

5. (a) Let f be an analytic function in a region containing $\bar{B}(0 ; R)$, then $f(B(0 ; R)$ contains a disk of radious $\frac{1}{72} \cdot R\left|f^{\prime}(0)\right|$.
(b) State and prove Great Picard theorem.
(c) Define univalent function and show that a univalent function that maps $|z|<\infty$ onto $|w|<\infty$ must be linear.
