2. (a) Define homeomorphism. Prove that homeomorphism is an equivalence relation in the family of topological spaces.

ED-2803

M.A./M.Sc. (Previous)
 EXAMINATION, 2021
 MATHEMATICS

Paper Third

(Topology)

Time : Three hours

Maximum Marks : 100
Note : All questions are compulsory. Solve any two parts of each question. All questions carry equal marks.

Unit-1

1. (a) State and prove Schroeder-Bernstein theorem.
(b) Let (X, T) be a topological space and $A \subseteq X$. Then $\operatorname{int}(A)$ is the union of all open sets contained in A. It is also the largest open subsets of X contained in A.
(c) Define relative topology. $\operatorname{Let}(X, T)$ be a topological space and $Y \subseteq X$. Let $V \in T / Y$ such that $V=U \cap Y$ where $U \in T$. Show that T / Y is topology on Y and hence $(Y, T / Y)$ is topological space.
[P.T.O.]
5.(a) A topological space (X, T) is Hausdorff if and only if every net in X can converge to atmost one point.
(b) Define filter and ultrafilter. Show that every filter is contained in an ultrafilter.
(c) Define fundamental group of circle. Let $x_{0} x_{1} \in X$. If there is a path in X from x_{0} to x_{1}, then the groups $\pi_{1}\left(X_{1} x_{0}\right)$ and $\pi_{1}\left(X_{1} x_{1}\right)$ are isomorphic.
