

ED-602

M.Sc. 3rd Semester Examination, March-April 2021

PHYSICS

Paper - II

Atomic and Molecular Physics

Time: Three Hours] [Maximum Marks: 80 Note: Answer all questions. The figures in the righthand margin indicate marks. Unit-I (a) (i) Explain the effect of spin-orbit interaction on the structure of a Discuss spectral line. the fine structure of Ha line. 10 An electron have quantum number l = 2, determine the possible values of the components of angular momentum along a specified direction. 6 OR(b) (i) Explain penetrating and non-penetrating orbits for a single valence electron. 12 **DRG_65**_(3) (Turn Over)

(2)

(ii) Calculate the spin-orbit interaction splitting of a level corresponding to n = 2 and l = 1 of hydrogen atom. 4 **Unit-II** State, explain and deduce Pauli's (a) (i) principle. What is its physical significance? (ii) Explain two electron systems. OR (b) What is L-S and J-J coupling? Deduce the interaction energy for it. 16 Unit-III 3. (a) Define normal and anomalous Zeeman effect. Derive g factor and interaction energy for anomalous Zeeman effect with suitable splitting diagram. 16 ORExplain Paschen-Back effect 10 spin-orbit correction for it. (ii) Compute Zeeman the pattern $^{2}D_{\frac{5}{2}} - ^{2}P_{\frac{3}{2}}$ components for transition. 6

DRG_65_(3) (Continued)

(3)

		Unit-IV	
4.	(a)	Explain rotational spectra of diatomic molecule. Deduce rotational energy of it with rotational energy level diagram.	16
		OR	
	(b)	(i) Explain diatomic molecule as 'symmetric top'. Deduce expression for the rotational energy levels of a symmetric top molecules.	12
		(ii) The wave numbers of the lines in a band are given by $v = 1000 (2n - 1)$ for n positive and by $v = -1000 (2n + 1)$ for n negative. Calculate the moment of inertia of the emitter molecule of the spectrum.	4
		Unit-V	
5.	(a)	(i) Derive expression for vibrational frequency and force constant of anharmonic oscillator.	10
		(ii) Explain vibrational Raman Spectra.	6
	X	OR	
Ò	(b)	(i) Explain energy level diagram of a diatomic molecule as anharmonic oscillator.	14
		(ii) With exciting line 2536 Å a Raman line for a sample is observed at 2612 Å. Calculate the Raman shift in cm ⁻¹ .	2

DRG_65_(3)

220