ED-602

M.Sc. 3rd Semester

Examination, March-April 2021

PHYSICS

Paper - II

Atomic and Molecular Physics

Time : Three Hours] [Maximum Marks : 80

Note : Answer all questions. The figures in the righthand margin indicate marks.

Unit-I

1. (a) (i) Explain the effect of spin-orbit interaction on the structure of a spectral line. Discuss the fine structure of $\mathrm{H} \alpha$ line.10
(ii) An electron have quantum number $l=2$, determine the possible values of the components of angular momentum along a specified direction.

OR
(b) (i) Explain penetrating and non-penetrating orbits for a single valence electron.

(2)

(ii) Calculate the spin-orbit interaction splitting of a level corresponding to $n=2$ and $l=1$ of hydrogen atom.

Unit-II

2. (a) (i) State, explain and deduce Pauli's ${ }^{\circ}$ principle. What is its physical significance?

8
(ii) Explain two electron systems. 8

OR

(b) What is L-S and J-J coupling? Deduce the interaction energy for it.

Unit-III

3. (a) Define normal and anomalous Zeeman effect. Derive g factor and interaction energy for anomalous Zeeman effect with suitable splitting diagram.

OR

(b) (i) Explain Paschen-Back effect and spin-orbit correction for it. 10
(ii) Compute the Zeeman pattern components for ${ }^{2} D_{5 / 2}-{ }^{2} P_{3 / 2}$ transition.

(3)

Unit-IV

4. (a) Explain rotational spectra of diatomic molecule. Deduce rotational energy of it with rotational energy level diagram.

OR

(b) (i) Explain diatomic molecule as ${ }^{\circ}$ 'symmetric top'. Deduce expression for the rotational energy levels of a symmetric top molecules.
(ii) The wave numbers of the lines in a band are given by $v=1000(2 n-1)$ for n positive and by $v=-1000(2 n+1)$ for n negative. Calculate the moment of inertia of the emitter molecule of the spectrum.

- Unit-V

5. (a) (i) Derive expression for vibrational frequency and force constant of anharmonic oscillator. 10
(iii) Explain vibrational Raman Spectra. 6

OR

(b) (i) Explain energy level diagram of a diatomic molecule as anharmonic oscillator.
(ii) With exciting line 2536 Å a Raman line for a sample is observed at $2612 \AA$. Calculate the Raman shift in cm^{-1}.

